BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16251444)

  • 1. Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia.
    Nikolaeva MA; Mukherjee B; Stys PK
    J Neurosci; 2005 Oct; 25(43):9960-7. PubMed ID: 16251444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources of axonal calcium loading during in vitro ischemia of rat dorsal roots.
    Petrescu N; Micu I; Malek S; Ouardouz M; Stys PK
    Muscle Nerve; 2007 Apr; 35(4):451-7. PubMed ID: 17206661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of calcium homeostasis to axonal sodium in axons of mouse optic nerve.
    Verbny Y; Zhang CL; Chiu SY
    J Neurophysiol; 2002 Aug; 88(2):802-16. PubMed ID: 12163532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat.
    Hashimoto T; Ishii T; Ohmori H
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):611-27. PubMed ID: 9003548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excessive release of [3H] noradrenaline by veratridine and ischemia in spinal cord.
    Sumiya Y; Torigoe K; Gerevich Z; Köfalvi A; Vizi ES
    Neurochem Int; 2001 Jul; 39(1):59-63. PubMed ID: 11311450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental importance of Na+-Ca2+ exchange for the pacemaking mechanism in guinea-pig sino-atrial node.
    Sanders L; Rakovic S; Lowe M; Mattick PA; Terrar DA
    J Physiol; 2006 Mar; 571(Pt 3):639-49. PubMed ID: 16423859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: role of reverse sodium-calcium exchange.
    Lehning EJ; Doshi R; Isaksson N; Stys PK; LoPachin RM
    J Neurochem; 1996 Feb; 66(2):493-500. PubMed ID: 8592118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.
    Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G
    Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of high intracellular [Na+]-induced release of [3H]noradrenaline in rat hippocampal slices.
    Gerevich Z; Tretter L; Adam-Vizi V; Baranyi M; Kiss JP; Zelles T; Vizi ES
    Neuroscience; 2001; 104(3):761-8. PubMed ID: 11440807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex interplay between glutamate receptors and intracellular Ca2+ stores during ischaemia in rat spinal cord white matter.
    Ouardouz M; Malek S; Coderre E; Stys PK
    J Physiol; 2006 Nov; 577(Pt 1):191-204. PubMed ID: 16945971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic depolarization induced by veratridine increases the survival of rat retinal ganglion cells 'in vitro'.
    Fernandez Pereira SP; Giestal de Araujo E
    Int J Dev Neurosci; 2000 Dec; 18(8):773-80. PubMed ID: 11156743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of sodium ion influx in depolarization-induced neuronal cell death by high KCI or veratridine.
    Takahashi S; Shibata M; Fukuuchi Y
    Eur J Pharmacol; 1999 May; 372(3):297-304. PubMed ID: 10395025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria.
    Zhang Y; Lipton P
    J Neurosci; 1999 May; 19(9):3307-15. PubMed ID: 10212290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium signaling of glial cells along mammalian axons.
    Kriegler S; Chiu SY
    J Neurosci; 1993 Oct; 13(10):4229-45. PubMed ID: 7692011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium imaging in live rat optic nerve myelinated axons in vitro using confocal laser microscopy.
    Ren Y; Ridsdale A; Coderre E; Stys PK
    J Neurosci Methods; 2000 Oct; 102(2):165-76. PubMed ID: 11040413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices.
    Gassó S; Suñol C; Sanfeliu C; Rodríguez-Farré E; Cristòfol RM
    Life Sci; 2000; 67(10):1219-31. PubMed ID: 10954055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of calcium and sodium fluxes in anoxic myelinated central nervous system axons.
    Stys PK; Lopachin RM
    Neuroscience; 1998 Jan; 82(1):21-32. PubMed ID: 9483500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic alpha2-receptors regulate reverse Na+/Ca2+-exchange and transmitter release in Na+-loaded peripheral sympathetic nerves.
    Török TL; Nagykáldi Z; Sáska Z; Kovács T; Nada SA; Zilliikens S; Magyar K; Sylvester Vizi E
    Neurochem Int; 2004 Oct; 45(5):699-711. PubMed ID: 15234113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of an intracellular calcium chelator on the regulation of electrically evoked [3H]-noradrenaline release from rat hippocampal slices.
    Fredholm BB; Hu PS
    Br J Pharmacol; 1993 Jan; 108(1):126-31. PubMed ID: 8094021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.