These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 16251452)

  • 1. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
    Bao L; Avshalumov MV; Rice ME
    J Neurosci; 2005 Oct; 25(43):10029-40. PubMed ID: 16251452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels.
    Avshalumov MV; Chen BT; Koós T; Tepper JM; Rice ME
    J Neurosci; 2005 Apr; 25(17):4222-31. PubMed ID: 15858048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
    Avshalumov MV; Rice ME
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11729-34. PubMed ID: 13679582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling.
    Bao L; Avshalumov MV; Patel JC; Lee CR; Miller EW; Chang CJ; Rice ME
    J Neurosci; 2009 Jul; 29(28):9002-10. PubMed ID: 19605638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release.
    Avshalumov MV; Patel JC; Rice ME
    J Neurophysiol; 2008 Sep; 100(3):1590-601. PubMed ID: 18632893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels.
    Sidló Z; Reggio PH; Rice ME
    Neurochem Int; 2008 Jan; 52(1-2):80-8. PubMed ID: 17767979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.
    Patel JC; Witkovsky P; Coetzee WA; Rice ME
    J Neurochem; 2011 Sep; 118(5):721-36. PubMed ID: 21689107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis.
    Freestone PS; Chung KK; Guatteo E; Mercuri NB; Nicholson LF; Lipski J
    Eur J Neurosci; 2009 Nov; 30(10):1849-59. PubMed ID: 19912331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons.
    Calabresi P; Marfia GA; Centonze D; Pisani A; Bernardi G
    Stroke; 1999 Jan; 30(1):171-9. PubMed ID: 9880406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.
    Bonsi P; Calabresi P; De Persis C; Papa M; Centonze D; Bernardi G; Pisani A
    Exp Neurol; 2004 Jan; 185(1):169-81. PubMed ID: 14697328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta.
    Wu J; Hu J; Chen YP; Takeo T; Suga S; Dechon J; Liu Q; Yang KC; St John PA; Hu G; Wang H; Wakui M
    J Pharmacol Exp Ther; 2006 Oct; 319(1):155-64. PubMed ID: 16837559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical lower sensitivity of Locus Coeruleus than Substantia Nigra pars compacta neurons to acute actions of rotenone.
    Yee AG; Freestone PS; Bai JZ; Lipski J
    Exp Neurol; 2017 Jan; 287(Pt 1):34-43. PubMed ID: 27771354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
    Chen BT; Moran KA; Avshalumov MV; Rice ME
    J Neurochem; 2006 Feb; 96(3):645-55. PubMed ID: 16405515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide.
    Stanford IM; Lacey MG
    J Neurosci; 1995 Jun; 15(6):4651-7. PubMed ID: 7790930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition.
    Costa C; Belcastro V; Tozzi A; Di Filippo M; Tantucci M; Siliquini S; Autuori A; Picconi B; Spillantini MG; Fedele E; Pittaluga A; Raiteri M; Calabresi P
    J Neurosci; 2008 Aug; 28(32):8040-52. PubMed ID: 18685029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of dopaminergic neurotransmission in rat striatum upon in vitro and in vivo diclofenac treatment.
    Milusheva E; Baranyi M; Kittel A; Fekete A; Zelles T; Vizi ES; Sperlágh B
    J Neurochem; 2008 Apr; 105(2):360-8. PubMed ID: 18036194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale.
    Patel JC; Rice ME
    ACS Chem Neurosci; 2012 Dec; 3(12):991-1001. PubMed ID: 23259034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels.
    Li DP; Chen SR; Pan HL
    J Neurochem; 2010 Apr; 113(2):530-42. PubMed ID: 20096091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia.
    Guatteo E; Federici M; Siniscalchi A; Knöpfel T; Mercuri NB; Bernardi G
    J Neurophysiol; 1998 Mar; 79(3):1239-45. PubMed ID: 9497405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiating effect of the ATP-sensitive potassium channel blocker glibenclamide on complex I inhibitor neurotoxicity in vitro and in vivo.
    Kou J; Klorig DC; Bloomquist JR
    Neurotoxicology; 2006 Sep; 27(5):826-34. PubMed ID: 16725203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.