These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16252747)

  • 1. Tunable highly birefringent photonic bandgap fibers.
    Zhang C; Kai G; Wang Z; Liu Y; Sun T; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(20):2703-5. PubMed ID: 16252747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source.
    Liu Z; Zheng X; Zhang H; Guo Y; Zhou B
    Opt Lett; 2006 Sep; 31(18):2789-91. PubMed ID: 16936893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.
    Thapa R; Knabe K; Corwin KL; Washburn BR
    Opt Express; 2006 Oct; 14(21):9576-83. PubMed ID: 19529347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-core photonic crystal fibers for tunable polarization mode dispersion compensation.
    Zografopoulos DC; Vázquez C; Kriezis EE; Yioultsis TV
    Opt Express; 2011 Oct; 19(22):21680-91. PubMed ID: 22109018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber.
    Shirakawa A; Tanisho M; Ueda K
    Opt Express; 2006 Dec; 14(25):12039-48. PubMed ID: 19529631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid.
    Du J; Liu Y; Wang Z; Liu Z; Zou B; Jin L; Liu B; Kai G; Dong X
    Opt Express; 2008 Mar; 16(6):4263-9. PubMed ID: 18542521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers.
    Poletti F; Broderick NG; Richardson D; Monro T
    Opt Express; 2005 Oct; 13(22):9115-24. PubMed ID: 19498947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor.
    Han T; Liu YG; Wang Z; Zou B; Tai B; Liu B
    Opt Lett; 2010 Jun; 35(12):2061-3. PubMed ID: 20548386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization coupling in a highly birefringent photonic crystal fiber by torsional acoustic wave.
    Lee KJ; Hong KS; Park HC; Kim BY
    Opt Express; 2008 Mar; 16(7):4631-8. PubMed ID: 18542561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers.
    Noordegraaf D; Scolari L; Lægsgaard J; Rindorf L; Alkeskjold TT
    Opt Express; 2007 Jun; 15(13):7901-12. PubMed ID: 19547117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of low-loss and highly birefringent hollow-core photonic crystal fiber.
    Roberts PJ; Williams DP; Sabert H; Mangan BJ; Bird DM; Birks TA; Knight JC; Russell PS
    Opt Express; 2006 Aug; 14(16):7329-41. PubMed ID: 19529102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber.
    Alkeskjold TT; Laegsgaard J; Bjarklev A; Hermann DS; Broeng J; Li J; Gauza S; Wu ST
    Appl Opt; 2006 Apr; 45(10):2261-4. PubMed ID: 16607993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical devices based on liquid crystal photonic bandgap fibres.
    Larsen T; Bjarklev A; Hermann D; Broeng J
    Opt Express; 2003 Oct; 11(20):2589-96. PubMed ID: 19471372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice.
    Yue Y; Kai G; Wang Z; Sun T; Jin L; Lu Y; Zhang C; Liu J; Li Y; Liu Y; Yuan S; Dong X
    Opt Lett; 2007 Mar; 32(5):469-71. PubMed ID: 17392890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers.
    Jin L; Wang Z; Liu Y; Kai G; Dong X
    Opt Express; 2008 Dec; 16(25):21119-31. PubMed ID: 19065252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers.
    Han T; Liu YG; Wang Z; Guo J; Wu Z; Luo M; Li S; Wang J; Wang W
    Opt Express; 2014 Jun; 22(12):15002-16. PubMed ID: 24977594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes.
    Perrin M; Quiquempois Y; Bouwmans G; Douay M
    Opt Express; 2007 Oct; 15(21):13783-95. PubMed ID: 19550649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers.
    Scolari L; Alkeskjold T; Riishede J; Bjarklev A; Hermann D; Anawati A; Nielsen M; Bassi P
    Opt Express; 2005 Sep; 13(19):7483-96. PubMed ID: 19498773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor.
    Han T; Liu YG; Wang Z; Guo J; Wu Z; Wang S; Li Z; Zhou W
    Opt Express; 2013 Jan; 21(1):122-8. PubMed ID: 23388902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular hole ENZ photonic crystal fibers exhibit high birefringence.
    Yang T; Ding C; Ziolkowski RW; Guo YJ
    Opt Express; 2018 Jun; 26(13):17264-17278. PubMed ID: 30119540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.