BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16253325)

  • 1. The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene.
    Simis KS; Bistolfi A; Bellare A; Pruitt LA
    Biomaterials; 2006 Mar; 27(9):1688-94. PubMed ID: 16253325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene.
    Turell MB; Bellare A
    Biomaterials; 2004 Aug; 25(17):3389-98. PubMed ID: 15020111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements.
    McKellop H; Shen FW; Lu B; Campbell P; Salovey R
    J Orthop Res; 1999 Mar; 17(2):157-67. PubMed ID: 10221831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wear behaviour of cross-linked polyethylene assessed in vitro under severe conditions.
    Affatato S; Bersaglia G; Rocchi M; Taddei P; Fagnano C; Toni A
    Biomaterials; 2005 Jun; 26(16):3259-67. PubMed ID: 15603821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friction and wear behavior of ultra-high molecular weight polyethylene as a function of polymer crystallinity.
    Kanaga Karuppiah KS; Bruck AL; Sundararajan S; Wang J; Lin Z; Xu ZH; Li X
    Acta Biomater; 2008 Sep; 4(5):1401-10. PubMed ID: 18378200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator.
    McKellop HA; Shen FW; Campbell P; Ota T
    J Orthop Res; 1999 May; 17(3):329-39. PubMed ID: 10376720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of crosslinking UHMWPE on its tensile and compressive creep performance.
    Lewis G; Carroll M
    Biomed Mater Eng; 2001; 11(3):167-83. PubMed ID: 11564901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and chemical changes in ultra-high-molecular-weight polyethylene due to gamma radiation-induced crosslinking and annealing in air.
    Viano AM; Spence KE; Shanks MA; Scott MA; Redfearn RD; Carlson CW; Holm TA; Ray AK
    Biomed Mater Eng; 2007; 17(5):257-68. PubMed ID: 17851168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength.
    Oral E; Ghali BW; Rowell SL; Micheli BR; Lozynsky AJ; Muratoglu OK
    Biomaterials; 2010 Sep; 31(27):7051-60. PubMed ID: 20579730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation-induced dynamic changes in morphology reflected on freeze-fractured surface of gamma-irradiated ultra-high molecular weight polyethylene components.
    Watanabe E; Suzuki M; Nagata K; Kaneeda T; Harada Y; Utsumi M; Mori A; Moriya H
    J Biomed Mater Res; 2002 Dec; 62(4):540-9. PubMed ID: 12221702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE.
    Oral E; Malhi AS; Muratoglu OK
    Biomaterials; 2006 Feb; 27(6):917-25. PubMed ID: 16105682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale and nanoscale surface strain mapping of single asperity wear in ultra high molecular weight polyethylene: Effects of materials, load, and asperity geometry.
    Wernlé JD; Gilbert JL
    J Biomed Mater Res A; 2010 Jun; 93(4):1442-53. PubMed ID: 19927370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE.
    Bistolfi A; Turell MB; Lee YL; Bellare A
    J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):137-44. PubMed ID: 18985795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wear of contemporary total knee replacements--a knee simulator study of six current designs.
    Utzschneider S; Harrasser N; Schroeder C; Mazoochian F; Jansson V
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):583-8. PubMed ID: 19450910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of processing, sterilization and crosslinking on UHMWPE fatigue fracture and fatigue wear mechanisms in joint arthroplasty.
    Ansari F; Ries MD; Pruitt L
    J Mech Behav Biomed Mater; 2016 Jan; 53():329-340. PubMed ID: 26386167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of crystallization conditions on the tensile properties of radiation crosslinked, vitamin E stabilized UHMWPE.
    George A; Ngo HD; Bellare A
    J Mech Behav Biomed Mater; 2014 Dec; 40():406-412. PubMed ID: 25305634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.