BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16253537)

  • 1. The numerical simulation of osteophyte formation on the edge of the vertebral body using quantitative bone remodeling theory.
    He G; Xinghua Z
    Joint Bone Spine; 2006 Jan; 73(1):95-101. PubMed ID: 16253537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of topology optimization on the quantitative description of the external shape of bone structure.
    Xinghua Z; He G; Bingzhao G
    J Biomech; 2005 Aug; 38(8):1612-20. PubMed ID: 15958218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation.
    Kumaresan S; Yoganandan N; Pintar FA; Maiman DJ; Goel VK
    J Orthop Res; 2001 Sep; 19(5):977-84. PubMed ID: 11562150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines.
    Al-Rawahi M; Luo J; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2011 May; 36(10):770-7. PubMed ID: 20683388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteophyte formation in the vertebral column: a review of the etiologic factors--Part II.
    Nathan M; Pope MH; Grobler LJ
    Contemp Orthop; 1994 Aug; 29(2):113-9. PubMed ID: 10150240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mathematical simulation of biomechanical background of osteophyte formation in cervical vertebra].
    Barsa P; Novák J; Souček T; Maršík F; Suchomel P
    Acta Chir Orthop Traumatol Cech; 2011; 78(4):328-33. PubMed ID: 21888843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Bone density change simulation by using internal bone remodeling theory and finite element method].
    An M; Ma A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):60-3. PubMed ID: 16532811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Simulation of the rat tibial bone density changes with the finite element method].
    An MY; Ma AJ; Li YH; Wan YM
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):55-7. PubMed ID: 15852552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic adaptation of vertebral endplate and trabecular bone following annular injury in a rat model of degenerative disc disease.
    Maerz T; Newton M; Marek AA; Planalp M; Baker K
    Spine J; 2018 Nov; 18(11):2091-2101. PubMed ID: 29886163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On biological availability dependent bone remodeling.
    Papastavrou A; Schmidt I; Steinmann P
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):432-444. PubMed ID: 32126825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the effect of non-linearities in the equation of bone remodeling.
    Xinghua Z; He G; Dong Z; Bingzhao G
    J Biomech; 2002 Jul; 35(7):951-60. PubMed ID: 12052397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trabecular bone remodeling phenomenon as a pattern for structural optimization.
    Nowak M
    Stud Health Technol Inform; 2008; 133():196-200. PubMed ID: 18376027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of inter-segment stability and osteophyte formation on the multi-segment C2-C7 after unilateral and bilateral facetectomy.
    Ng HW; Teo EC; Zhang QH
    Proc Inst Mech Eng H; 2004; 218(3):183-91. PubMed ID: 15239569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancellous bone Young's modulus variation within the vertebral body of a ligamentous lumbar spine--application of bone adaptive remodeling concepts.
    Goel VK; Ramirez SA; Kong W; Gilbertson LG
    J Biomech Eng; 1995 Aug; 117(3):266-71. PubMed ID: 8618378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The behavior of adaptive bone-remodeling simulation models.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1992 Dec; 25(12):1425-41. PubMed ID: 1491020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability analysis and finite element simulation of bone remodeling model.
    Zidi M; Ramtani S
    J Biomech Eng; 2000 Dec; 122(6):677-80. PubMed ID: 11192392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.