These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16253537)

  • 21. Strain energy density used as the biomechanical signal for osteophyte growth in the cervical spine - biomed 2009.
    Wheeldon JA; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2009; 45():143-8. PubMed ID: 19369754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An analytical approach to investigate the evolution of bone volume fraction in bone remodeling simulation at the tissue and cell level.
    Colloca M; Ito K; van Rietbergen B
    J Biomech Eng; 2014 Mar; 136(3):031004. PubMed ID: 24337166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of axial and flexural stresses in the vertebral body cortex and trabecular bone in lordosis and two sagittal cervical translation configurations with an elliptical shell model.
    Harrison DE; Jones EW; Janik TJ; Harrison DD
    J Manipulative Physiol Ther; 2002; 25(6):391-401. PubMed ID: 12183697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting changes in mechanical properties of trabecular bone by adaptive remodeling.
    Tawara D; Nagura K
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):415-425. PubMed ID: 27669992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertebral endplate morphology follows bone remodeling principles.
    Grosland NM; Goel VK
    Spine (Phila Pa 1976); 2007 Nov; 32(23):E667-73. PubMed ID: 17978642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of axial and flexural stresses in the vertebral body cortex and trabecular bone in lordosis and two sagittal cervical translation configurations with an elliptical shell model.
    Dulhunty J
    J Manipulative Physiol Ther; 2003; 26(9):608; author reply 608-12. PubMed ID: 14673410
    [No Abstract]   [Full Text] [Related]  

  • 27. On age-dependent bone remodeling.
    Papastavrou A; Schmidt I; Deng K; Steinmann P
    J Biomech; 2020 Apr; 103():109701. PubMed ID: 32169286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Numeric simulation of functional remodeling of the anterior alveolar bone].
    Wang WF; Xin HT; Zang SL; Ding J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2012 Apr; 47(4):229-32. PubMed ID: 22800702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of a fixation screw on trabecular structural changes in a vertebral body predicted by remodeling simulation.
    Tsubota K; Adachi T; Tomita Y
    Ann Biomed Eng; 2003 Jun; 31(6):733-40. PubMed ID: 12797624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical estimation of bone density and elastic constants distribution in a human mandible.
    Reina JM; García-Aznar JM; Domínguez J; Doblaré M
    J Biomech; 2007; 40(4):828-36. PubMed ID: 16687149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of gene polymorphisms with intervertebral disc degeneration and vertebral osteophyte formation.
    Sakai Y; Matsuyama Y; Hasegawa Y; Yoshihara H; Nakamura H; Katayama Y; Imagama S; Ito Z; Ishiguro N; Hamajima N
    Spine (Phila Pa 1976); 2007 May; 32(12):1279-86. PubMed ID: 17515815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biomechanical influence of anterior vertebral body osteophytes on the lumbar spine: A finite element study.
    Wang Md K; Jiang PhD C; Wang PhD L; Wang Md H; Niu PhD W
    Spine J; 2018 Dec; 18(12):2288-2296. PubMed ID: 29990595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling.
    Kerner J; Huiskes R; van Lenthe GH; Weinans H; van Rietbergen B; Engh CA; Amis AA
    J Biomech; 1999 Jul; 32(7):695-703. PubMed ID: 10400357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multilevel cervical fusion and its effect on disc degeneration and osteophyte formation.
    Lopez-Espina CG; Amirouche F; Havalad V
    Spine (Phila Pa 1976); 2006 Apr; 31(9):972-8. PubMed ID: 16641772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women.
    Muraki S; Yamamoto S; Ishibashi H; Horiuchi T; Hosoi T; Orimo H; Nakamura K
    Osteoporos Int; 2004 Sep; 15(9):724-8. PubMed ID: 14997287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mathematical model for simulating the bone remodeling process under mechanical stimulus.
    Li J; Li H; Shi L; Fok AS; Ucer C; Devlin H; Horner K; Silikas N
    Dent Mater; 2007 Sep; 23(9):1073-8. PubMed ID: 17137621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling external bone adaptation using evolutionary structural optimisation.
    Chen G; Pettet GJ; Pearcy M; McElwain DL
    Biomech Model Mechanobiol; 2007 Jul; 6(4):275-85. PubMed ID: 16933126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element analysis of the cervical spine: a material property sensitivity study.
    Kumaresan S; Yoganandan N; Pintar FA
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):41-53. PubMed ID: 10619089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.