BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16253859)

  • 1. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model.
    Burrowes KS; Hunter PJ; Tawhai MH
    Acad Radiol; 2005 Nov; 12(11):1464-74. PubMed ID: 16253859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational predictions of pulmonary blood flow gradients: gravity versus structure.
    Burrowes KS; Tawhai MH
    Respir Physiol Neurobiol; 2006 Dec; 154(3):515-23. PubMed ID: 16386472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels.
    Burrowes KS; Hunter PJ; Tawhai MH
    J Appl Physiol (1985); 2005 Aug; 99(2):731-8. PubMed ID: 15802366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effect of postural and gravitational variations on the distribution of pulmonary blood flow via an image-based computational model.
    Burrowes KS; Hunter PJ; Tawhai MH
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6138-40. PubMed ID: 17281665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species-specific pulmonary arterial asymmetry determines species differences in regional pulmonary perfusion.
    Burrowes KS; Hoffman EA; Tawhai MH
    Ann Biomed Eng; 2009 Dec; 37(12):2497-509. PubMed ID: 19768544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity.
    Glenny RW; Lamm WJ; Bernard SL; An D; Chornuk M; Pool SL; Wagner WW; Hlastala MP; Robertson HT
    J Appl Physiol (1985); 2000 Sep; 89(3):1239-48. PubMed ID: 10956375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of pulmonary perfusion heterogeneity induced by gravity and lung inflation using arterial spin labeling.
    Fan L; Liu SY; Xiao XS; Sun F
    Eur J Radiol; 2010 Feb; 73(2):249-54. PubMed ID: 19121903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational models of structure-function relationships in the pulmonary circulation and their validation.
    Tawhai MH; Burrowes KS; Hoffman EA
    Exp Physiol; 2006 Mar; 91(2):285-93. PubMed ID: 16407477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computer simulation of pulmonary perfusion in three dimensions.
    Glenny RW; Robertson HT
    J Appl Physiol (1985); 1995 Jul; 79(1):357-69. PubMed ID: 7559243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pulmonary arterial flow phenomena in spiral and Lecompte models by computational fluid dynamics.
    Tang T; Chiu IS; Chen HC; Cheng KY; Chen SJ
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):529-34. PubMed ID: 11547306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions.
    Parker JC; Cave CB; Ardell JL; Hamm CR; Williams SG
    J Appl Physiol (1985); 1997 Oct; 83(4):1370-82. PubMed ID: 9338448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal modeling of pulmonary blood flow heterogeneity.
    Glenny RW; Robertson HT
    J Appl Physiol (1985); 1991 Mar; 70(3):1024-30. PubMed ID: 2032967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels.
    Payne SJ
    Med Biol Eng Comput; 2004 Nov; 42(6):799-806. PubMed ID: 15587471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of blood flow and ventilation in the lung: gravity is not the only factor.
    Galvin I; Drummond GB; Nirmalan M
    Br J Anaesth; 2007 Apr; 98(4):420-8. PubMed ID: 17347182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDCT-based quantification of porcine pulmonary arterial morphometry and self-similarity of arterial branching geometry.
    Lee YC; Clark AR; Fuld MK; Haynes S; Divekar AA; Hoffman EA; Tawhai MH
    J Appl Physiol (1985); 2013 May; 114(9):1191-201. PubMed ID: 23449941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of pig's coronary arterial blood flow with detailed anatomical data.
    Kassab GS; Berkley J; Fung YC
    Ann Biomed Eng; 1997; 25(1):204-17. PubMed ID: 9124734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary blood flow distribution in standing horses is not dominated by gravity.
    Hlastala MP; Bernard SL; Erickson HH; Fedde MR; Gaughan EM; McMurphy R; Emery MJ; Polissar N; Glenny RW
    J Appl Physiol (1985); 1996 Sep; 81(3):1051-61. PubMed ID: 8889734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary arterial morphometry from microfocal X-ray computed tomography.
    Karau KL; Molthen RC; Dhyani A; Haworth ST; Hanger CC; Roerig DL; Johnson RH; Dawson CA
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2747-56. PubMed ID: 11709444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of vasoconstriction in gravity-nondependent central-peripheral gradient in pulmonary blood flow.
    Hakim TS; Lisbona R; Michel RP; Dean GW
    J Appl Physiol (1985); 1993 Feb; 74(2):897-904. PubMed ID: 8458812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.