BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16255421)

  • 1. Position-sensing technologies for movement analysis in stroke rehabilitation.
    Zheng H; Black ND; Harris ND
    Med Biol Eng Comput; 2005 Jul; 43(4):413-20. PubMed ID: 16255421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.
    Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke.
    Carey JR; Durfee WK; Bhatt E; Nagpal A; Weinstein SA; Anderson KM; Lewis SM
    Neurorehabil Neural Repair; 2007; 21(3):216-32. PubMed ID: 17351083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for (Tele-) Monitoring of the Rehabilitation Progress in Stroke Patients: eHealth 2015 Special Issue.
    Jagos H; David V; Haller M; Kotzian S; Hofmann M; Schlossarek S; Eichholzer K; Winkler M; Frohner M; Reichel M; Mayr W; Rafolt D
    Appl Clin Inform; 2015; 6(4):757-68. PubMed ID: 26767068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interactive Internet-based system for tracking upper limb motion in home-based rehabilitation.
    Zhang S; Hu H; Zhou H
    Med Biol Eng Comput; 2008 Mar; 46(3):241-9. PubMed ID: 18087743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical telerehabilitation: applications for physiatrists.
    Gregory P; Alexander J; Satinsky J
    PM R; 2011 Jul; 3(7):647-56; quiz 656. PubMed ID: 21777864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telerehabilitation using virtual reality task can improve balance in patients with stroke.
    Cikajlo I; Rudolf M; Goljar N; Burger H; Matjačić Z
    Disabil Rehabil; 2012; 34(1):13-8. PubMed ID: 21864205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a powered mobile module for the ArmAssist home-based telerehabilitation platform.
    Jung JH; Valencia DB; Rodríguez-de-Pablo C; Keller T; Perry JC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650424. PubMed ID: 24187242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and implementation of a home stroke telerehabilitation system.
    Durfee W; Carey J; Nuckley D; Deng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2422-5. PubMed ID: 19965201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Web-based telerehabilitation for the upper extremity after stroke.
    Reinkensmeyer DJ; Pang CT; Nessler JA; Painter CC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):102-8. PubMed ID: 12236447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Home-based telerehabilitation after stroke].
    Keidel M; Vauth F; Richter J; Hoffmann B; Soda H; Griewing B; Scibor M
    Nervenarzt; 2017 Feb; 88(2):113-119. PubMed ID: 28101620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Telerehabilitation in Stroke Recovery: A Survey on Access and Willingness to Use Low-Cost Consumer Technologies.
    Edgar MC; Monsees S; Rhebergen J; Waring J; Van der Star T; Eng JJ; Sakakibara BM
    Telemed J E Health; 2017 May; 23(5):421-429. PubMed ID: 27705095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a novel telerehabilitation system with a force-sensing mechanism.
    Zhang S; Guo S; Gao B; Hirata H; Ishihara H
    Sensors (Basel); 2015 May; 15(5):11511-27. PubMed ID: 25996511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telerehabilitation for older people using off-the-shelf applications: acceptability and feasibility.
    Crotty M; Killington M; van den Berg M; Morris C; Taylor A; Carati C
    J Telemed Telecare; 2014 Oct; 20(7):370-6. PubMed ID: 25399997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic review of mechanisms of gait speed change post-stroke. Part 2: exercise capacity, muscle activation, kinetics, and kinematics.
    Wonsetler EC; Bowden MG
    Top Stroke Rehabil; 2017 Jul; 24(5):394-403. PubMed ID: 28218021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Home-based telesurveillance and rehabilitation after stroke: a real-life study.
    Bernocchi P; Vanoglio F; Baratti D; Morini R; Rocchi S; Luisa A; Scalvini S
    Top Stroke Rehabil; 2016 Apr; 23(2):106-15. PubMed ID: 27078116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Home-based technologies for stroke rehabilitation: A systematic review.
    Chen Y; Abel KT; Janecek JT; Chen Y; Zheng K; Cramer SC
    Int J Med Inform; 2019 Mar; 123():11-22. PubMed ID: 30654899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation.
    Putrino D
    Curr Opin Neurol; 2014 Dec; 27(6):631-6. PubMed ID: 25333603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.