These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16255427)

  • 1. Feature analysis of pathological speech signals using local discriminant bases technique.
    Umapathy K; Krishnan S
    Med Biol Eng Comput; 2005 Jul; 43(4):457-64. PubMed ID: 16255427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of pathological voices using a time-frequency approach.
    Umapathy K; Krishnan S; Parsa V; Jamieson DG
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathological speech signal analysis and classification using empirical mode decomposition.
    Kaleem M; Ghoraani B; Guergachi A; Krishnan S
    Med Biol Eng Comput; 2013 Jul; 51(7):811-21. PubMed ID: 23460198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions.
    Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z
    J Voice; 2017 Jan; 31(1):3-15. PubMed ID: 26992554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis.
    Behroozmand R; Almasganj F
    Comput Biol Med; 2007 Apr; 37(4):474-85. PubMed ID: 17034780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathological speech signal analysis using time-frequency approaches.
    Ghoraani B; Umapathy K; Sugavaneswaran L; Krishnan S
    Crit Rev Biomed Eng; 2012; 40(1):63-95. PubMed ID: 22428799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telephone-quality pathological speech classification using empirical mode decomposition.
    Kaleem MF; Ghoraani B; Guergachi A; Krishnan S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7095-8. PubMed ID: 22255973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals.
    Umapathy K; Krishnan S
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):517-23. PubMed ID: 16532778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies of the time structure of pathologic speech production. Presenting a screening method for evaluating expressive speech performance].
    Maier R; Sahler N
    Folia Phoniatr Logop; 1996; 48(2):51-6. PubMed ID: 8765549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M; Sindhu R; Vijean V; Yazid H; Nadarajaw T; Yaacob S; Polat K
    Comput Methods Programs Biomed; 2018 Mar; 155():39-51. PubMed ID: 29512503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of the use of continuous wavelet transform in the analysis of the fundamental frequency disturbance of the synthetic voice.
    Parraga A; Zaro MA; Schuck A
    Med Eng Phys; 2002; 24(7-8):553-9. PubMed ID: 12237053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection.
    Little MA; McSharry PE; Roberts SJ; Costello DA; Moroz IM
    Biomed Eng Online; 2007 Jun; 6():23. PubMed ID: 17594480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelet speech enhancement algorithm using exponential semi-soft mask filtering.
    Lee G; Dae Na S; Seong K; Cho JH; Nam Kim M
    Bioengineered; 2016 Sep; 7(5):352-356. PubMed ID: 27436063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Classification and System Combination for Automatically Identifying Physiological and Neuromuscular Laryngeal Pathologies.
    Cordeiro H; Fonseca J; GuimarĂ£es I; Meneses C
    J Voice; 2017 May; 31(3):384.e9-384.e14. PubMed ID: 27743845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms.
    Mesallam TA; Farahat M; Malki KH; Alsulaiman M; Ali Z; Al-Nasheri A; Muhammad G
    J Healthc Eng; 2017; 2017():8783751. PubMed ID: 29201333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.
    Souza TA; Vieira VJ; Correia SE; Costa SL; de A Costa WC; Souza MA
    Stud Health Technol Inform; 2015; 216():1047. PubMed ID: 26262346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated speech analysis applied to laryngeal disease categorization.
    Gelzinis A; Verikas A; Bacauskiene M
    Comput Methods Programs Biomed; 2008 Jul; 91(1):36-47. PubMed ID: 18346812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive value and discriminant capacity of cepstral- and spectral-based measures during continuous speech.
    Lowell SY; Colton RH; Kelley RT; Mizia SA
    J Voice; 2013 Jul; 27(4):393-400. PubMed ID: 23684735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.