These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16255429)

  • 1. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isokinetic elbow joint torques estimation from surface EMG and joint kinematic data: using an artificial neural network model.
    Luh JJ; Chang GC; Cheng CK; Lai JS; Kuo TS
    J Electromyogr Kinesiol; 1999 Jun; 9(3):173-83. PubMed ID: 10328412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic EMG-torque model of elbow based on neural networks.
    Liang Peng ; Zeng-Guang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of joint moments using a neural network model of muscle activations from EMG signals.
    Wang L; Buchanan TS
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):30-7. PubMed ID: 12173737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convolutional Neural Network Approach for Elbow Torque Estimation during Quasi-dynamic and Dynamic Contractions.
    Hajian G; Morin E; Etemad A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():665-668. PubMed ID: 34891380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static torque-angle relation of human elbow joint estimated with artificial neural network technique.
    Uchiyama T; Bessho T; Akazawa K
    J Biomech; 1998 Jun; 31(6):545-54. PubMed ID: 9755039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle activity-torque-velocity relations in human elbow extensor muscles.
    Uchiyama T; Akazawa K
    Front Med Biol Eng; 1999; 9(4):305-13. PubMed ID: 10718668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo assessment of elbow flexor work and activation during stretch-shortening cycle tasks.
    Benoit DL; Dowling JJ
    J Electromyogr Kinesiol; 2006 Aug; 16(4):352-64. PubMed ID: 16263310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic muscle mechanisms determined using an EMG-driven model.
    Wrbaskić N; Dowling JJ
    J Electromyogr Kinesiol; 2006 Feb; 16(1):32-41. PubMed ID: 16219477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human elbow joint torque is linearly encoded in electromyographic signals from multiple muscles.
    Kutch JJ; Buchanan TS
    Neurosci Lett; 2001 Sep; 311(2):97-100. PubMed ID: 11567787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG-based prediction of shoulder and elbow kinematics in able-bodied and spinal cord injured individuals.
    Au AT; Kirsch RF
    IEEE Trans Rehabil Eng; 2000 Dec; 8(4):471-80. PubMed ID: 11204038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.
    Liu P; Liu L; Martel F; Rancourt D; Clancy EA
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1020-8. PubMed ID: 23932797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Constant-Posture Force-Varying EMG-Force Dynamic Models About the Elbow.
    Dai C; Bardizbanian B; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1529-1538. PubMed ID: 28113322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.