These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16256345)

  • 21. Seasonal variation in phosphorus removal processes within reed beds--mass balance investigations.
    Headley TR; Huett DO; Davison L
    Water Sci Technol; 2003; 48(5):59-66. PubMed ID: 14621148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants.
    Han X; Wong YS; Wong MH; Tam NF
    Water Environ Res; 2008 Jul; 80(7):647-53. PubMed ID: 18710148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater.
    Calheiros CS; Rangel AO; Castro PM
    Water Res; 2007 Apr; 41(8):1790-8. PubMed ID: 17320926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent.
    Srivastava J; Chandra H; Tripathi K; Naraian R; Sahu RK
    J Basic Microbiol; 2008 Apr; 48(2):135-9. PubMed ID: 18383226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment.
    Cetin D; Dönmez S; Dönmez G
    J Environ Manage; 2008 Jul; 88(1):76-82. PubMed ID: 17363134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study.
    Quintelas C; Fernandes B; Castro J; Figueiredo H; Tavares T
    J Hazard Mater; 2008 May; 153(1-2):799-809. PubMed ID: 17933461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological and chemical removal of Cr(VI) from waste water: cost and benefit analysis.
    Demir A; Arisoy M
    J Hazard Mater; 2007 Aug; 147(1-2):275-80. PubMed ID: 17275186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins.
    Shi T; Wang Z; Liu Y; Jia S; Changming D
    J Hazard Mater; 2009 Jan; 161(2-3):900-6. PubMed ID: 18513867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk.
    Bansal M; Garg U; Singh D; Garg VK
    J Hazard Mater; 2009 Feb; 162(1):312-20. PubMed ID: 18573603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of chromium and pentachlorophenol from tannery effluents.
    Srivastava S; Ahmad AH; Thakur IS
    Bioresour Technol; 2007 Mar; 98(5):1128-32. PubMed ID: 16762546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.
    Fibbi D; Doumett S; Lepri L; Checchini L; Gonnelli C; Coppini E; Del Bubba M
    J Hazard Mater; 2012 Jan; 199-200():209-16. PubMed ID: 22104764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Batch adsorption studies for chromium removal.
    Sivamani S; Prince Immanuel V
    J Environ Sci Eng; 2008 Jan; 50(1):11-6. PubMed ID: 19192921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media.
    Carvalho PN; Basto MC; Almeida CM
    Bioresour Technol; 2012 Jul; 116():497-501. PubMed ID: 22522014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi.
    Prigione V; Zerlottin M; Refosco D; Tigini V; Anastasi A; Varese GC
    Bioresour Technol; 2009 Jun; 100(11):2770-6. PubMed ID: 19211244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz).
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):216-22. PubMed ID: 18192014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater.
    Rehman A; Zahoor A; Muneer B; Hasnain S
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):25-9. PubMed ID: 18498008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental study and modelling of Cr (VI) removal from wastewater using Lemna minor.
    Oporto C; Arce O; Van den Broeck E; Van der Bruggen B; Vandecasteele C
    Water Res; 2006 Apr; 40(7):1458-64. PubMed ID: 16540144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.