BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16256418)

  • 1. Archaeal chromatin proteins: different structures but common function?
    Sandman K; Reeve JN
    Curr Opin Microbiol; 2005 Dec; 8(6):656-61. PubMed ID: 16256418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation.
    Bell SD; Botting CH; Wardleworth BN; Jackson SP; White MF
    Science; 2002 Apr; 296(5565):148-51. PubMed ID: 11935028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM.
    Marsh VL; McGeoch AT; Bell SD
    J Mol Biol; 2006 Apr; 357(5):1345-50. PubMed ID: 16490210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7.
    Kumarevel T; Tanaka T; Nishio M; Gopinath SC; Takio K; Shinkai A; Kumar PK; Yokoyama S
    J Struct Biol; 2008 Jan; 161(1):9-17. PubMed ID: 17933554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus.
    Weininger U; Zeeb M; Neumann P; Löw C; Stubbs MT; Lipps G; Balbach J
    Biochemistry; 2009 Oct; 48(42):10030-7. PubMed ID: 19788170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal histones and the origin of the histone fold.
    Sandman K; Reeve JN
    Curr Opin Microbiol; 2006 Oct; 9(5):520-5. PubMed ID: 16920388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaea: The Final Frontier of Chromatin.
    Laursen SP; Bowerman S; Luger K
    J Mol Biol; 2021 Mar; 433(6):166791. PubMed ID: 33383035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7.
    Miyazono K; Tsujimura M; Kawarabayasi Y; Tanokura M
    Proteins; 2007 Jun; 67(4):1138-46. PubMed ID: 17357153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeal chromatin proteins.
    Zhang Z; Guo L; Huang L
    Sci China Life Sci; 2012 May; 55(5):377-85. PubMed ID: 22645082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism.
    Aravind L; Iyer LM; Anantharaman V
    Genome Biol; 2003; 4(10):R64. PubMed ID: 14519199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1.
    Kumarevel T; Sakamoto K; Gopinath SC; Shinkai A; Kumar PK; Yokoyama S
    Proteins; 2008 May; 71(3):1156-62. PubMed ID: 18004791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoid-associated proteins in Crenarchaea.
    Driessen RP; Dame RT
    Biochem Soc Trans; 2011 Jan; 39(1):116-21. PubMed ID: 21265758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and functional interaction between archaeal single-stranded DNA-binding protein and the 5'-3' nuclease NurA.
    Wei T; Zhang S; Zhu S; Sheng D; Ni J; Shen Y
    Biochem Biophys Res Commun; 2008 Mar; 367(3):523-9. PubMed ID: 18194801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray crystal structure of a hypothetical Sua5 protein from Sulfolobus tokodaii strain 7.
    Agari Y; Sato S; Wakamatsu T; Bessho Y; Ebihara A; Yokoyama S; Kuramitsu S; Shinkai A
    Proteins; 2008 Feb; 70(3):1108-11. PubMed ID: 18004774
    [No Abstract]   [Full Text] [Related]  

  • 17. The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in Archaea and Eukarya.
    Hecker A; Graille M; Madec E; Gadelle D; Le Cam E; van Tilbergh H; Forterre P
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):29-35. PubMed ID: 19143597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds.
    Shinkai A; Sekine S; Urushibata A; Terada T; Shirouzu M; Yokoyama S
    J Mol Biol; 2007 Oct; 372(5):1293-304. PubMed ID: 17720190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba.
    Marsh VL; Peak-Chew SY; Bell SD
    J Biol Chem; 2005 Jun; 280(22):21122-8. PubMed ID: 15824122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA.
    Han D; Lehmann K; Krauss G
    FEBS Lett; 2009 Jun; 583(12):1928-32. PubMed ID: 19427858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.