BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16256657)

  • 1. Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules.
    Kumar A; Joshi H; Pasricha R; Mandale AB; Sastry M
    J Colloid Interface Sci; 2003 Aug; 264(2):396-401. PubMed ID: 16256657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host-guest binding interaction.
    Chen M; Ding W; Kong Y; Diao G
    Langmuir; 2008 Apr; 24(7):3471-8. PubMed ID: 18278970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid phase transfer method for nanoparticles using alkylamine stabilizers.
    Wang X; Xu S; Zhou J; Xu W
    J Colloid Interface Sci; 2010 Aug; 348(1):24-8. PubMed ID: 20427048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-adaptable silver nanoparticles.
    Prasad BL; Arumugam SK; Bala T; Sastry M
    Langmuir; 2005 Feb; 21(3):822-6. PubMed ID: 15667154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a multi-dentate amphiphilic compound to transfer silver nanoparticles into an organic solvent.
    Gao N; Dong J; Zhang H; Zhou X; Zhang G; Eastoe J
    J Colloid Interface Sci; 2006 Dec; 304(2):388-93. PubMed ID: 17028006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface.
    Selvakannan PR; Swami A; Srisathiyanarayanan D; Shirude PS; Pasricha R; Mandale AB; Sastry M
    Langmuir; 2004 Aug; 20(18):7825-36. PubMed ID: 15323537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transfer of large anisotropic plasmon resonant silver nanoparticles from aqueous to organic solution.
    Kulkarni AP; Munechika K; Noone KM; Smith JM; Ginger DS
    Langmuir; 2009 Jul; 25(14):7932-9. PubMed ID: 19441811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of gold and silver nanoparticles by using redox-active amphiphiles and their phase transfer to organic solvents.
    Si S; Dinda E; Mandal TK
    Chemistry; 2007; 13(35):9850-61. PubMed ID: 17960550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transfer of oleic acid capped Ni(core)Ag(shell) nanoparticles assisted by the flexibility of oleic acid on the surface of silver.
    Bala T; Swami A; Prasad BL; Sastry M
    J Colloid Interface Sci; 2005 Mar; 283(2):422-31. PubMed ID: 15721914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance.
    Kasthuri J; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):387-93. PubMed ID: 19577440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transfer of Au-Ag alloy nanoparticles from aqueous medium to an organic solvent: effect of aging of surfactant on the formation of Ag-rich alloy compositions.
    Devarajan S; Vimalan B; Sampath S
    J Colloid Interface Sci; 2004 Oct; 278(1):126-32. PubMed ID: 15313645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of monodisperse magnetic nanoparticles.
    Lattuada M; Hatton TA
    Langmuir; 2007 Feb; 23(4):2158-68. PubMed ID: 17279708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers.
    Zhang L; Shen Y; Xie A; Li S; Jin B; Zhang Q
    J Phys Chem B; 2006 Apr; 110(13):6615-20. PubMed ID: 16570962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-induced synthesis of stable gold and silver nanoparticles and subsequent ligand exchange in water.
    Sardar R; Park JW; Shumaker-Parry JS
    Langmuir; 2007 Nov; 23(23):11883-9. PubMed ID: 17918982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.
    Kim JH; Bryan WW; Lee TR
    Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.
    Kasthuri J; Veerapandian S; Rajendiran N
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):55-60. PubMed ID: 18977643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus.
    Balaji DS; Basavaraja S; Deshpande R; Mahesh DB; Prabhakar BK; Venkataraman A
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):88-92. PubMed ID: 18995994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles.
    Kumar A; Mandal S; Selvakannan PR; Pasricha R; Mandale AB; Sastry M
    Langmuir; 2003 Jul; 19(15):6277-6282. PubMed ID: 28198630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate.
    Ganesh Babu MM; Gunasekaran P
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):191-5. PubMed ID: 19660920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+.
    Li H; Bian Y
    Nanotechnology; 2009 Apr; 20(14):145502. PubMed ID: 19420528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.