These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 16257202)
21. Tissue-specific regulation of malonyl-CoA decarboxylase activity in OLETF rats. Kim HJ; Zhao ZS; Lee YJ; Shim WS; Kim SK; Ahn CW; Park CW; Lee HC; Cha BS Diabetes Obes Metab; 2006 Mar; 8(2):175-83. PubMed ID: 16448521 [TBL] [Abstract][Full Text] [Related]
22. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated? Lopaschuk GD Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307 [TBL] [Abstract][Full Text] [Related]
23. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Bandyopadhyay GK; Yu JG; Ofrecio J; Olefsky JM Diabetes; 2006 Aug; 55(8):2277-85. PubMed ID: 16873691 [TBL] [Abstract][Full Text] [Related]
24. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064 [TBL] [Abstract][Full Text] [Related]
25. A highly sensitive high-throughput luminescence assay for malonyl-CoA decarboxylase. Lo MC; Wang M; Kim KW; Busby J; Yamane H; Zondlo J; Yuan C; Young SW; Xiao SH Anal Biochem; 2008 May; 376(1):122-30. PubMed ID: 18294446 [TBL] [Abstract][Full Text] [Related]
26. Novel trifluoroacetophenone derivatives as malonyl-CoA decarboxylase inhibitors. Wallace DM; Haramura M; Cheng JF; Arrhenius T; Nadzan AM Bioorg Med Chem Lett; 2007 Feb; 17(4):1127-30. PubMed ID: 17234415 [TBL] [Abstract][Full Text] [Related]
27. Targets for modulation of fatty acid oxidation in the heart. Lopaschuk GD Curr Opin Investig Drugs; 2004 Mar; 5(3):290-4. PubMed ID: 15083595 [TBL] [Abstract][Full Text] [Related]
28. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Wang W; Lopaschuk GD Expert Rev Cardiovasc Ther; 2007 Nov; 5(6):1123-34. PubMed ID: 18035928 [TBL] [Abstract][Full Text] [Related]
29. Fatty acids attenuate insulin regulation of 5'-AMP-activated protein kinase and insulin cardioprotection after ischemia. Folmes CD; Clanachan AS; Lopaschuk GD Circ Res; 2006 Jul; 99(1):61-8. PubMed ID: 16741157 [TBL] [Abstract][Full Text] [Related]
31. Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments of rat hepatocytes. Joly E; Bendayan M; Roduit R; Saha AK; Ruderman NB; Prentki M FEBS Lett; 2005 Dec; 579(29):6581-6. PubMed ID: 16298369 [TBL] [Abstract][Full Text] [Related]
32. Metabolism of protocatechuic acid influences fatty acid oxidation in rat heart: new anti-angina mechanism implication. Cao YG; Zhang L; Ma C; Chang BB; Chen YC; Tang YQ; Liu XD; Liu XQ Biochem Pharmacol; 2009 Mar; 77(6):1096-104. PubMed ID: 19109930 [TBL] [Abstract][Full Text] [Related]
33. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Lopaschuk GD Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S29-35. PubMed ID: 18719595 [TBL] [Abstract][Full Text] [Related]
34. Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells. Pimenta AS; Gaidhu MP; Habib S; So M; Fediuc S; Mirpourian M; Musheev M; Curi R; Ceddia RB J Cell Physiol; 2008 Nov; 217(2):478-85. PubMed ID: 18561258 [TBL] [Abstract][Full Text] [Related]
35. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Hafstad AD; Khalid AM; How OJ; Larsen TS; Aasum E Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1288-94. PubMed ID: 17213470 [TBL] [Abstract][Full Text] [Related]
36. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Folmes CD; Lopaschuk GD Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822 [TBL] [Abstract][Full Text] [Related]
37. Design, synthesis and biological evaluation of novel substituted benzoylguanidine derivatives as potent Na+/H+ exchanger inhibitors. Xu WT; Jin N; Xu J; Xu YG; Wang QJ; You QD Bioorg Med Chem Lett; 2009 Jun; 19(12):3283-7. PubMed ID: 19433354 [TBL] [Abstract][Full Text] [Related]
39. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. Jobgen WS; Fried SK; Fu WJ; Meininger CJ; Wu G J Nutr Biochem; 2006 Sep; 17(9):571-88. PubMed ID: 16524713 [TBL] [Abstract][Full Text] [Related]
40. ATP-citrate lyase as a target for hypolipidemic intervention. Design and synthesis of 2-substituted butanedioic acids as novel, potent inhibitors of the enzyme. Gribble AD; Dolle RE; Shaw A; McNair D; Novelli R; Novelli CE; Slingsby BP; Shah VP; Tew D; Saxty BA; Allen M; Groot PH; Pearce N; Yates J J Med Chem; 1996 Aug; 39(18):3569-84. PubMed ID: 8784456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]