These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 16257300)
21. Hot embossing and thermal bonding of poly(methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater. Wang X; Zhang L; Chen G Anal Bioanal Chem; 2011 Nov; 401(8):2657-65. PubMed ID: 21922306 [TBL] [Abstract][Full Text] [Related]
22. Analysis of specific gene by integration of isothermal amplification and electrophoresis on poly(methyl methacrylate) microchips. Hataoka Y; Zhang L; Mori Y; Tomita N; Notomi T; Baba Y Anal Chem; 2004 Jul; 76(13):3689-93. PubMed ID: 15228342 [TBL] [Abstract][Full Text] [Related]
23. Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips. Regel A; Lunte S Electrophoresis; 2013 Jul; 34(14):2101-6. PubMed ID: 23670816 [TBL] [Abstract][Full Text] [Related]
24. A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips. Chen Z; Zhang L; Chen G Electrophoresis; 2010 Aug; 31(15):2512-9. PubMed ID: 20665912 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Brown L; Koerner T; Horton JH; Oleschuk RD Lab Chip; 2006 Jan; 6(1):66-73. PubMed ID: 16372071 [TBL] [Abstract][Full Text] [Related]
26. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips. Kelly RT; Pan T; Woolley AT Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386 [TBL] [Abstract][Full Text] [Related]
27. Hot embossing of electrophoresis microchannels in PMMA substrates using electric heating wires. Gan Z; Yu Z; Chen Z; Chen G Anal Bioanal Chem; 2010 Apr; 396(7):2715-20. PubMed ID: 20155251 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Koesdjojo MT; Tennico YH; Remcho VT Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914 [TBL] [Abstract][Full Text] [Related]
29. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Vázquez M; Frankenfeld C; Coltro WK; Carrilho E; Diamond D; Lunte SM Analyst; 2010 Jan; 135(1):96-103. PubMed ID: 20024187 [TBL] [Abstract][Full Text] [Related]
30. One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules. Kitagawa F; Kubota K; Sueyoshi K; Otsuka K J Pharm Biomed Anal; 2010 Dec; 53(5):1272-7. PubMed ID: 20678876 [TBL] [Abstract][Full Text] [Related]
31. Modification of a poly(methyl methacrylate) injection-molded microchip and its use for high performance analysis of DNA. Zhou XM; Dai ZP; Liu X; Luo Y; Wang H; Lin BC J Sep Sci; 2005 Feb; 28(3):225-33. PubMed ID: 15776923 [TBL] [Abstract][Full Text] [Related]
32. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method. Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347 [TBL] [Abstract][Full Text] [Related]
33. Faster and improved microchip electrophoresis using a capillary bundle. Sun Y; Kwok YC; Nguyen NT Electrophoresis; 2007 Dec; 28(24):4765-8. PubMed ID: 18072216 [TBL] [Abstract][Full Text] [Related]
34. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution. Nagata H; Tabuchi M; Hirano K; Baba Y Electrophoresis; 2005 Jul; 26(14):2687-91. PubMed ID: 15937980 [TBL] [Abstract][Full Text] [Related]
35. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding. Dang F; Tabata O; Kurokawa M; Ewis AA; Zhang L; Yamaoka Y; Shinohara S; Shinohara Y; Ishikawa M; Baba Y Anal Chem; 2005 Apr; 77(7):2140-6. PubMed ID: 15801748 [TBL] [Abstract][Full Text] [Related]
36. Channel wall coating on a poly-(methyl methacrylate) CE microchip by thermal immobilization of a cellulose derivative for size-based protein separation. Okada H; Kaji N; Tokeshi M; Baba Y Electrophoresis; 2007 Dec; 28(24):4582-9. PubMed ID: 18072224 [TBL] [Abstract][Full Text] [Related]
37. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Chen Y; Zhang L; Chen G Electrophoresis; 2008 May; 29(9):1801-14. PubMed ID: 18384069 [TBL] [Abstract][Full Text] [Related]
38. A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method. Liu C; Cui D; Cai H; Chen X; Geng Z Electrophoresis; 2006 Jul; 27(14):2917-23. PubMed ID: 16721901 [TBL] [Abstract][Full Text] [Related]
39. Hybrid dynamic coating with n-dodecyl beta-D-maltoside and methyl cellulose for high-performance carbohydrate analysis on poly(methyl methacrylate) chips. Dang F; Kakehi K; Cheng J; Tabata O; Kurokawa M; Nakajima K; Ishikawa M; Baba Y Anal Chem; 2006 Mar; 78(5):1452-8. PubMed ID: 16503593 [TBL] [Abstract][Full Text] [Related]
40. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding. Sun X; Peeni BA; Yang W; Becerril HA; Woolley AT J Chromatogr A; 2007 Aug; 1162(2):162-6. PubMed ID: 17466320 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]