These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16257487)

  • 21. Evidence of a limited visuo-motor memory used in programming wrist movements.
    Miall RC; Haggard PN; Cole JD
    Exp Brain Res; 1995; 107(2):267-80. PubMed ID: 8773245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upper limb asymmetries in the matching of proprioceptive versus visual targets.
    Goble DJ; Brown SH
    J Neurophysiol; 2008 Jun; 99(6):3063-74. PubMed ID: 18436632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The control parameters used by the CNS to guide the hand depend on the visuo-motor task: evidence from visually guided pointing.
    Thaler L; Todd JT
    Neuroscience; 2009 Mar; 159(2):578-98. PubMed ID: 19174179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gaze behavior when reaching to remembered targets.
    Flanagan JR; Terao Y; Johansson RS
    J Neurophysiol; 2008 Sep; 100(3):1533-43. PubMed ID: 18632880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A widespread visually-sensitive functional network relates to symptoms in essential tremor.
    Archer DB; Coombes SA; Chu WT; Chung JW; Burciu RG; Okun MS; Wagle Shukla A; Vaillancourt DE
    Brain; 2018 Feb; 141(2):472-485. PubMed ID: 29293948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of vision for online control of manual aiming movements in persons with autism spectrum disorders.
    Glazebrook C; Gonzalez D; Hansen S; Elliott D
    Autism; 2009 Jul; 13(4):411-33. PubMed ID: 19535469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of predictive feedforward and sensory feedback signals for online control of visually guided movement.
    Gritsenko V; Yakovenko S; Kalaska JF
    J Neurophysiol; 2009 Aug; 102(2):914-30. PubMed ID: 19474166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional activation in parieto-premotor and visual areas dependent on congruency between hand movement and visual stimuli during motor-visual priming.
    Stanley J; Miall RC
    Neuroimage; 2007 Jan; 34(1):290-9. PubMed ID: 17056279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speed-accuracy tradeoff during performance of a tracking task without visual feedback.
    Sribunruangrit N; Marque CK; Lenay C; Hanneton S; Gapenne O; Vanhoutte C
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):131-9. PubMed ID: 15068196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of motor intention in motor awareness: an experimental study on anosognosia for hemiplegia.
    Fotopoulou A; Tsakiris M; Haggard P; Vagopoulou A; Rudd A; Kopelman M
    Brain; 2008 Dec; 131(Pt 12):3432-42. PubMed ID: 18812442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early Huntington's disease affects movements in transformed sensorimotor mappings.
    Boulet C; Lemay M; Bédard MA; Chouinard MJ; Chouinard S; Richer F
    Brain Cogn; 2005 Apr; 57(3):236-43. PubMed ID: 15780456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociations in rod bisection: the effect of viewing conditions on perception and action.
    Hughes LE; Bates TC; Aimola Davies AM
    Cortex; 2008 Oct; 44(9):1279-87. PubMed ID: 18761142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence in support of a feedback-sensitive central timekeeper for an over-learned repetitive motor behavior (pencil shading).
    Plotkin GM; Logigian EL
    Electromyogr Clin Neurophysiol; 2002 Jun; 42(4):243-51. PubMed ID: 12056339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task.
    Roitman AV; Massaquoi SG; Takahashi K; Ebner TJ
    J Neurophysiol; 2004 Feb; 91(2):901-11. PubMed ID: 14561685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study.
    Ogawa K; Inui T; Sugio T
    Neuroimage; 2006 Oct; 32(4):1760-70. PubMed ID: 16863694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. No double-dissociation between optic ataxia and visual agnosia: multiple sub-streams for multiple visuo-manual integrations.
    Pisella L; Binkofski F; Lasek K; Toni I; Rossetti Y
    Neuropsychologia; 2006; 44(13):2734-48. PubMed ID: 16753188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shape distortion produced by isolated mismatch between vision and proprioception.
    Malfait N; Henriques DY; Gribble PL
    J Neurophysiol; 2008 Jan; 99(1):231-43. PubMed ID: 17977930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distal versus proximal arm tremor in multiple sclerosis assessed by visually guided tracking tasks.
    Liu X; Miall RC; Aziz TZ; Palace JA; Stein JF
    J Neurol Neurosurg Psychiatry; 1999 Jan; 66(1):43-7. PubMed ID: 9886449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cued motor imagery in patients with multiple sclerosis.
    Heremans E; Nieuwboer A; Spildooren J; De Bondt S; D'hooge AM; Helsen W; Feys P
    Neuroscience; 2012 Mar; 206():115-21. PubMed ID: 22266343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.