These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16257532)

  • 21. Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study.
    Cheng P; Li Y; Li S; Zhang M; Zhou Z
    Phys Chem Chem Phys; 2010 May; 12(18):4667-77. PubMed ID: 20428546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protonation sites in methyl nitrate and the formation of transient CH4NO3 radicals. A neutralization-reionization mass spectrometric and computational study.
    Polasek M; Turecek F
    J Am Soc Mass Spectrom; 2000 May; 11(5):380-92. PubMed ID: 10790841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposition of protonated noradrenaline and normetanephrine assisted by NH2 migration studied by electrospray tandem mass spectrometry and molecular orbital calculations.
    Rogalewicz F; Bourcier S; Hoppilliard Y
    Rapid Commun Mass Spectrom; 2005; 19(6):743-51. PubMed ID: 15712294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals.
    Turecek F; Chung TW; Moss CL; Wyer JA; Ehlerding A; Holm AI; Zettergren H; Nielsen SB; Hvelplund P; Chamot-Rooke J; Bythell B; Paizs B
    J Am Chem Soc; 2010 Aug; 132(31):10728-40. PubMed ID: 20681705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gas-phase protonation of pyridine. A variable-time neutralization-reionization and Ab initio study of pyridinium radicals.
    Nguyen VQ; Turecek F
    J Mass Spectrom; 1997 Jan; 32(1):55-63. PubMed ID: 9008868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward a general mechanism of electron capture dissociation.
    Syrstad EA; Turecek F
    J Am Soc Mass Spectrom; 2005 Feb; 16(2):208-24. PubMed ID: 15694771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions.
    Lee S; Chung G; Kim J; Oh HB
    Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isomerization and fragmentation reactions of gaseous phenylarsane radical cations and phenylarsanyl cations. A study by tandem mass spectrometry and theoretical calculations.
    Letzel M; Kirchhoff D; Grützmacher HF; Stein D; Grützmacher H
    Dalton Trans; 2006 Apr; (16):2008-16. PubMed ID: 16609772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds.
    Moss CL; Liang W; Li X; Tureček F
    J Am Soc Mass Spectrom; 2012 Mar; 23(3):446-59. PubMed ID: 22187160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates.
    Zagorevskii D; Song M; Breneman C; Yuan Y; Fuchs T; Gates KS; Greenlief CM
    J Am Soc Mass Spectrom; 2003 Aug; 14(8):881-92. PubMed ID: 12892912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perturbing peptide cation-radical electronic states by thioxoamide groups: formation, dissociations, and energetics of thioxopeptide cation-radicals.
    Zimnicka M; Chung TW; Moss CL; Tureček F
    J Phys Chem A; 2013 Feb; 117(6):1265-75. PubMed ID: 22765351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling deoxyribonucleic acid and ribonucleic acid damage in the gas phase.
    Turecek F
    Eur J Mass Spectrom (Chichester); 2007; 13(1):89-95. PubMed ID: 17878545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.
    Hamid AM; El-Shall MS; Hilal R; Elroby S; Aziz SG
    J Chem Phys; 2014 Aug; 141(5):054305. PubMed ID: 25106585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elimination of water from the carboxyl group of GlyGlyH+.
    Balta B; Aviyente V; Lifshitz C
    J Am Soc Mass Spectrom; 2003 Oct; 14(10):1192-203. PubMed ID: 14530099
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass-spectrometric and computational study of tryptophan radicals (Trp + H)˙ produced by collisional electron transfer to protonated tryptophan in the gas phase.
    Gregersen JA; Tureček F
    Phys Chem Chem Phys; 2010 Nov; 12(41):13434-47. PubMed ID: 20830385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.
    Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J
    J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protonation sites in gaseous pyrrole and imidazole: a neutralization-reionization and ab initio study.
    Nguyen VQ; Turecek F
    J Mass Spectrom; 1996 Oct; 31(10):1173-84. PubMed ID: 8916426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron transfer dissociation of photolabeled peptides. Backbone cleavages compete with diazirine ring rearrangements.
    Marek A; Pepin R; Peng B; Laszlo KJ; Bush MF; Tureček F
    J Am Soc Mass Spectrom; 2013 Nov; 24(11):1641-53. PubMed ID: 23633016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The triplet state of cytosine and its derivatives: electron impact and quantum chemical study.
    Abouaf R; Pommier J; Dunet H; Quan P; Nam PC; Nguyen MT
    J Chem Phys; 2004 Dec; 121(23):11668-74. PubMed ID: 15634133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b(2), y(1), and y(2) ions.
    Paizs B; Suhai S
    Rapid Commun Mass Spectrom; 2002; 16(5):375-89. PubMed ID: 11857721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.