BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16257556)

  • 1. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli.
    Yuan LZ; Rouvière PE; Larossa RA; Suh W
    Metab Eng; 2006 Jan; 8(1):79-90. PubMed ID: 16257556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High isoprenoid flux Escherichia coli as a host for carotenoids production.
    Suh W
    Methods Mol Biol; 2012; 834():49-62. PubMed ID: 22144352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin.
    Lemuth K; Steuer K; Albermann C
    Microb Cell Fact; 2011 Apr; 10():29. PubMed ID: 21521516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modulation of isoprenoid gene expression with multiple regulatory parts for improved beta-carotene production].
    Zhao J; Liu Y; Li Q; Zhu X; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):41-55. PubMed ID: 23631117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatory optimization of chromosomal integrated mevalonate pathway for β-carotene production in Escherichia coli.
    Ye L; Zhang C; Bi C; Li Q; Zhang X
    Microb Cell Fact; 2016 Dec; 15(1):202. PubMed ID: 27905930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition.
    Yoon SH; Park HM; Kim JE; Lee SH; Choi MS; Kim JY; Oh DK; Keasling JD; Kim SW
    Biotechnol Prog; 2007; 23(3):599-605. PubMed ID: 17500531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts.
    Misawa N; Shimada H
    J Biotechnol; 1997 Jan; 59(3):169-81. PubMed ID: 9519479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase.
    Matthews PD; Wurtzel ET
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):396-400. PubMed ID: 10803894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli.
    Kajiwara S; Fraser PD; Kondo K; Misawa N
    Biochem J; 1997 Jun; 324 ( Pt 2)(Pt 2):421-6. PubMed ID: 9182699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli.
    Wu T; Ye L; Zhao D; Li S; Li Q; Zhang B; Bi C; Zhang X
    Metab Eng; 2017 Sep; 43(Pt A):85-91. PubMed ID: 28688931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replicon-free and markerless methods for genomic insertion of DNAs in phage attachment sites and controlled expression of chromosomal genes in Escherichia coli.
    Chiang CJ; Chen PT; Chao YP
    Biotechnol Bioeng; 2008 Dec; 101(5):985-95. PubMed ID: 18553504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
    Verwaal R; Wang J; Meijnen JP; Visser H; Sandmann G; van den Berg JA; van Ooyen AJ
    Appl Environ Microbiol; 2007 Jul; 73(13):4342-50. PubMed ID: 17496128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel plasmid vector designed for chromosomal gene integration and expression: use for developing a genetically stable Escherichia coli melanin production strain.
    Sabido A; Martínez LM; de Anda R; Martínez A; Bolívar F; Gosset G
    Plasmid; 2013 Jan; 69(1):16-23. PubMed ID: 22884755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over-production of beta-carotene from metabolically engineered Escherichia coli.
    Kim SW; Kim JB; Jung WH; Kim JH; Jung JK
    Biotechnol Lett; 2006 Jun; 28(12):897-904. PubMed ID: 16786275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the halophilic bacterium Halomonas elongata to produce beta-carotene.
    Rodríguez-Sáiz M; Sánchez-Porro C; De La Fuente JL; Mellado E; Barredo JL
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):637-43. PubMed ID: 17899066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli.
    Guo JY; Hu KL; Bi CH; Li QY; Zhang XL
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):697-705. PubMed ID: 29752566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of copy number of a broad host range plasmid for metabolic engineering.
    Tao L; Jackson RE; Cheng Q
    Metab Eng; 2005 Jan; 7(1):10-7. PubMed ID: 15721806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cloning vector for creation of Escherichia coli lacZ translational fusions and generation of linear template for chromosomal integration.
    Uhlich GA; Chen CY
    Plasmid; 2012 May; 67(3):259-63. PubMed ID: 22197962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.