These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 16257639)

  • 1. Iron and oxidative injury-- a commentary on "Fatty acid-mediated iron translocation: a synergistic mechanism of oxidative injury" by D. Yao et al.
    Kallianpur AR
    Free Radic Biol Med; 2005 Nov; 39(10):1305-9. PubMed ID: 16257639
    [No Abstract]   [Full Text] [Related]  

  • 2. Fatty acid-mediated intracellular iron translocation: a synergistic mechanism of oxidative injury.
    Yao D; Shi W; Gou Y; Zhou X; Yee Aw T; Zhou Y; Liu Z
    Free Radic Biol Med; 2005 Nov; 39(10):1385-98. PubMed ID: 16257648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of iron in oxygen-mediated toxicities.
    Ryan TP; Aust SD
    Crit Rev Toxicol; 1992; 22(2):119-41. PubMed ID: 1510819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of labile iron pool in cardiovascular diseases.
    Kruszewski M
    Acta Biochim Pol; 2004; 51(2):471-80. PubMed ID: 15218543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluxing the mitochondria to insulin resistance.
    Watt MJ; Hevener AL
    Cell Metab; 2008 Jan; 7(1):5-6. PubMed ID: 18177719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices.
    Vickers AE; Bentley P; Fisher RL
    Toxicol In Vitro; 2006 Oct; 20(7):1173-82. PubMed ID: 16545538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designer macrophages: oxidative metabolism fuels inflammation repair.
    Lacy-Hulbert A; Moore KJ
    Cell Metab; 2006 Jul; 4(1):7-8. PubMed ID: 16814727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causes of oxidative stress in Alzheimer disease.
    Zhu X; Su B; Wang X; Smith MA; Perry G
    Cell Mol Life Sci; 2007 Sep; 64(17):2202-10. PubMed ID: 17605000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assays of fatty acid beta-oxidation activity.
    Bennett MJ
    Methods Cell Biol; 2007; 80():179-97. PubMed ID: 17445695
    [No Abstract]   [Full Text] [Related]  

  • 11. Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis.
    Kabat GC; Rohan TE
    Cancer Causes Control; 2007 Dec; 18(10):1047-53. PubMed ID: 17823849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation.
    Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A
    Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperammonemia causes protein oxidation and enhanced proteasomal activity in response to mitochondria-mediated oxidative stress in rat primary astrocytes.
    Widmer R; Kaiser B; Engels M; Jung T; Grune T
    Arch Biochem Biophys; 2007 Aug; 464(1):1-11. PubMed ID: 17475207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of peroxisome proliferator-activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men.
    Risérus U; Sprecher D; Johnson T; Olson E; Hirschberg S; Liu A; Fang Z; Hegde P; Richards D; Sarov-Blat L; Strum JC; Basu S; Cheeseman J; Fielding BA; Humphreys SM; Danoff T; Moore NR; Murgatroyd P; O'Rahilly S; Sutton P; Willson T; Hassall D; Frayn KN; Karpe F
    Diabetes; 2008 Feb; 57(2):332-9. PubMed ID: 18024853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid oxidation in Alzheimer disease.
    Moreira PI; Nunomura A; Nakamura M; Takeda A; Shenk JC; Aliev G; Smith MA; Perry G
    Free Radic Biol Med; 2008 Apr; 44(8):1493-505. PubMed ID: 18258207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox signaling and cancer: the role of "labile" iron.
    Galaris D; Skiada V; Barbouti A
    Cancer Lett; 2008 Jul; 266(1):21-9. PubMed ID: 18374479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system.
    Carvajal AK; Rustad T; Mozuraityte R; Storrø I
    J Agric Food Chem; 2009 Sep; 57(17):7826-33. PubMed ID: 19691337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism.
    Bonen A; Han XX; Habets DD; Febbraio M; Glatz JF; Luiken JJ
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1740-9. PubMed ID: 17264223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle.
    Petrak J; Myslivcova D; Man P; Cmejla R; Cmejlova J; Vyoral D; Elleder M; Vulpe CD
    Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1490-8. PubMed ID: 17307722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.