BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16257742)

  • 1. Characterization of southern Taiwan red soils as a regenerable sorbent for sorption of hydrogen sulfide from coal gas with spectroscopic techniques.
    Ko TH; Chu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):407-14. PubMed ID: 16257742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic study on sorption of hydrogen sulfide by means of red soil.
    Ko TH; Chu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2253-9. PubMed ID: 15911419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.
    Ko TH; Chu H; Lin HP; Peng CY
    J Hazard Mater; 2006 Aug; 136(3):776-83. PubMed ID: 16469434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils.
    Ko TH; Chu H; Tseng JJ
    Chemosphere; 2006 Aug; 64(6):881-91. PubMed ID: 16527331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature removal of hydrogen sulfide using an N-150 sorbent.
    Ko TH; Chu H; Chaung LK; Tseng TK
    J Hazard Mater; 2004 Oct; 114(1-3):145-52. PubMed ID: 15511585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic study on the zinc-contaminated soils for the determination of zinc speciation.
    Ko TH; Shih MH; Hsueh HT
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):442-7. PubMed ID: 16859969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide removal from coal gas by the metal-ferrite sorbents made from the heavy metal wastewater sludge.
    Tseng TK; Chang HC; Chu H; Chen HT
    J Hazard Mater; 2008 Dec; 160(2-3):482-8. PubMed ID: 18440697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas.
    Ko TH; Chu H; Liou YJ
    J Hazard Mater; 2007 Aug; 147(1-2):334-41. PubMed ID: 17293040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray absorption spectroscopy study of H2S sorption on iron-rich soil: characterization of iron-sulfur species.
    Ko TH; Yu LS; Hung CJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1247-51. PubMed ID: 17126592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of impacts of soil fractions on phenanthrene sorption.
    Luo L; Zhang S; Ma Y
    Chemosphere; 2008 Jun; 72(6):891-6. PubMed ID: 18472137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures.
    Bandosz TJ
    J Colloid Interface Sci; 2002 Feb; 246(1):1-20. PubMed ID: 16290378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.
    Chen L; Bhattacharya S
    Environ Sci Technol; 2013 Feb; 47(3):1729-34. PubMed ID: 23301852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash.
    Asaoka S; Hayakawa S; Kim KH; Takeda K; Katayama M; Yamamoto T
    J Colloid Interface Sci; 2012 Jul; 377(1):284-90. PubMed ID: 22487226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments.
    Shao H; Butler EC
    Chemosphere; 2007 Aug; 68(10):1807-13. PubMed ID: 17537483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Investigation on the nitrogen functionality of volatile through FTIR spectroscopy equipped with a long path distance gas cell].
    Guo XM; Hui SE; Hao JM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1393-6. PubMed ID: 16379273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy.
    Kurková M; Klika Z; Kliková C; Havel J
    Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic approaches for phosphorus speciation in soils and other environmental systems.
    Kizewski F; Liu YT; Morris A; Hesterberg D
    J Environ Qual; 2011; 40(3):751-66. PubMed ID: 21546661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions.
    Garrone E; Otero Areán C
    Chem Soc Rev; 2005 Oct; 34(10):846-57. PubMed ID: 16172674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics.
    Sun Z; Yu Y; Mao L; Feng Z; Yu H
    J Hazard Mater; 2008 Dec; 160(2-3):456-61. PubMed ID: 18423854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.