These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16258019)
1. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Liu Y; Ahn JE; Datta S; Salzman RA; Moon J; Huyghues-Despointes B; Pittendrigh B; Murdock LL; Koiwa H; Zhu-Salzman K Plant Physiol; 2005 Nov; 139(3):1545-56. PubMed ID: 16258019 [TBL] [Abstract][Full Text] [Related]
2. Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Berger S; Bell E; Sadka A; Mullet JE Plant Mol Biol; 1995 Mar; 27(5):933-42. PubMed ID: 7766883 [TBL] [Abstract][Full Text] [Related]
3. A nonclassical arabinogalactan protein gene highly expressed in vascular tissues, AGP31, is transcriptionally repressed by methyl jasmonic acid in Arabidopsis. Liu C; Mehdy MC Plant Physiol; 2007 Nov; 145(3):863-74. PubMed ID: 17885091 [TBL] [Abstract][Full Text] [Related]
5. JAV1 controls jasmonate-regulated plant defense. Hu P; Zhou W; Cheng Z; Fan M; Wang L; Xie D Mol Cell; 2013 May; 50(4):504-15. PubMed ID: 23706819 [TBL] [Abstract][Full Text] [Related]
6. Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. Yan H; Yoo MJ; Koh J; Liu L; Chen Y; Acikgoz D; Wang Q; Chen S J Proteome Res; 2014 Dec; 13(12):5751-66. PubMed ID: 25311705 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of an Arabidopsis phosphate starvation-induced secreted acid phosphatase as a vegetative storage protein. Sun L; Wang L; Zheng Z; Liu D Plant Sci; 2018 Dec; 277():278-284. PubMed ID: 30466593 [TBL] [Abstract][Full Text] [Related]
8. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Wang L; Li Z; Qian W; Guo W; Gao X; Huang L; Wang H; Zhu H; Wu JW; Wang D; Liu D Plant Physiol; 2011 Nov; 157(3):1283-99. PubMed ID: 21941000 [TBL] [Abstract][Full Text] [Related]
9. Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Gamboa A; Paéz-Valencia J; Acevedo GF; Vázquez-Moreno L; Alvarez-Buylla RE Biochem Biophys Res Commun; 2001 Nov; 288(4):1018-26. PubMed ID: 11689012 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Tran HT; Qian W; Hurley BA; She YM; Wang D; Plaxton WC Plant Cell Environ; 2010 Nov; 33(11):1789-803. PubMed ID: 20545876 [TBL] [Abstract][Full Text] [Related]
11. Role of aromatic aldehyde synthase in wounding/herbivory response and flower scent production in different Arabidopsis ecotypes. Gutensohn M; Klempien A; Kaminaga Y; Nagegowda DA; Negre-Zakharov F; Huh JH; Luo H; Weizbauer R; Mengiste T; Tholl D; Dudareva N Plant J; 2011 May; 66(4):591-602. PubMed ID: 21284755 [TBL] [Abstract][Full Text] [Related]
12. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation. Zhang Y; Wang X; Lu S; Liu D J Exp Bot; 2014 Dec; 65(22):6577-88. PubMed ID: 25246445 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional assays of AtTLP18.3 identify its novel acid phosphatase activity in thylakoid lumen. Wu HY; Liu MS; Lin TP; Cheng YS Plant Physiol; 2011 Nov; 157(3):1015-25. PubMed ID: 21908686 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
16. A downstream mediator in the growth repression limb of the jasmonate pathway. Yan Y; Stolz S; Chételat A; Reymond P; Pagni M; Dubugnon L; Farmer EE Plant Cell; 2007 Aug; 19(8):2470-83. PubMed ID: 17675405 [TBL] [Abstract][Full Text] [Related]
17. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Mao P; Duan M; Wei C; Li Y Plant Cell Physiol; 2007 Jun; 48(6):833-42. PubMed ID: 17510065 [TBL] [Abstract][Full Text] [Related]
18. Stability of AtVSP in the insect digestive canal determines its defensive capability. Chi YH; Jing X; Lei J; Ahn JE; Koo YD; Yun DJ; Lee SY; Behmer ST; Koiwa H; Zhu-Salzman K J Insect Physiol; 2011 Mar; 57(3):391-9. PubMed ID: 21192943 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of OsPAP2: transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Hur YJ; Jin BR; Nam J; Chung YS; Lee JH; Choi HK; Yun DJ; Yi G; Kim YH; Kim DH Biotechnol Lett; 2010 Jan; 32(1):163-70. PubMed ID: 19838636 [TBL] [Abstract][Full Text] [Related]
20. NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. Varet A; Parker J; Tornero P; Nass N; Nürnberger T; Dangl JL; Scheel D; Lee J Mol Plant Microbe Interact; 2002 Jun; 15(6):608-16. PubMed ID: 12059109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]