These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16258033)

  • 21. Genetics of morphogenesis and pathogenic development of Ustilago maydis.
    Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE
    Adv Genet; 2007; 57():1-47. PubMed ID: 17352901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.
    Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G
    PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ustilago maydis reprograms cell proliferation in maize anthers.
    Gao L; Kelliher T; Nguyen L; Walbot V
    Plant J; 2013 Sep; 75(6):903-14. PubMed ID: 23795972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps.
    Cabrera-Ponce JL; León-Ramírez CG; Verver-Vargas A; Palma-Tirado L; Ruiz-Herrera J
    Fungal Genet Biol; 2012 Oct; 49(10):765-71. PubMed ID: 22921263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors.
    Schilling L; Matei A; Redkar A; Walbot V; Doehlemann G
    Mol Plant Pathol; 2014 Oct; 15(8):780-9. PubMed ID: 25346968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.
    Moretti M; Wang L; Grognet P; Lanver D; Link H; Kahmann R
    Mol Microbiol; 2017 Sep; 105(6):901-921. PubMed ID: 28686341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Castles and cuitlacoche: the first international Ustilago conference.
    Kronstad JW
    Fungal Genet Biol; 2003 Apr; 38(3):265-71. PubMed ID: 12684016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis.
    Klose J; Kronstad JW
    Eukaryot Cell; 2006 Dec; 5(12):2047-61. PubMed ID: 16998075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.
    van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G
    New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role for nitrate assimilatory genes in virulence of Ustilago maydis.
    Khanal S; Schroeder L; Nava-Mercado OA; Mendoza H; Perlin MH
    Fungal Biol; 2021 Oct; 125(10):764-775. PubMed ID: 34537172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence.
    Alvarez-Tabarés I; Pérez-Martín J
    PLoS One; 2010 Sep; 5(9):e12933. PubMed ID: 20885997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis.
    Dürrenberger F; Laidlaw RD; Kronstad JW
    Mol Microbiol; 2001 Jul; 41(2):337-48. PubMed ID: 11489122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Biotrophic Development of
    Lanver D; Müller AN; Happel P; Schweizer G; Haas FB; Franitza M; Pellegrin C; Reissmann S; Altmüller J; Rensing SA; Kahmann R
    Plant Cell; 2018 Feb; 30(2):300-323. PubMed ID: 29371439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions.
    Matei A; Doehlemann G
    Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ustilago maydis, the delightful blight.
    Banuett F
    Trends Genet; 1992 May; 8(5):174-80. PubMed ID: 1369743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis.
    Larraya LM; Boyce KJ; So A; Steen BR; Jones S; Marra M; Kronstad JW
    Eukaryot Cell; 2005 Dec; 4(12):2029-43. PubMed ID: 16339721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein.
    Garrido E; Voss U; Müller P; Castillo-Lluva S; Kahmann R; Pérez-Martín J
    Genes Dev; 2004 Dec; 18(24):3117-30. PubMed ID: 15601825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.
    Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD
    Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of mating and development in Ustilago maydis.
    Spellig T; Regenfelder E; Reichmann M; Schauwecker F; Bohlmann R; Urban M; Bölker M; Kämper J; Kahmann R
    Antonie Van Leeuwenhoek; 1994; 65(3):191-7. PubMed ID: 7847885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain.
    García-Pedrajas MD; Baeza-Montañez L; Gold SE
    Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.