BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16258273)

  • 1. Growth control under stress: mTOR regulation through the REDD1-TSC pathway.
    Ellisen LW
    Cell Cycle; 2005 Nov; 4(11):1500-02. PubMed ID: 16258273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling.
    DeYoung MP; Horak P; Sofer A; Sgroi D; Ellisen LW
    Genes Dev; 2008 Jan; 22(2):239-51. PubMed ID: 18198340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of mTOR and cell growth in response to energy stress by REDD1.
    Sofer A; Lei K; Johannessen CM; Ellisen LW
    Mol Cell Biol; 2005 Jul; 25(14):5834-45. PubMed ID: 15988001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
    Brugarolas J; Lei K; Hurley RL; Manning BD; Reiling JH; Hafen E; Witters LA; Ellisen LW; Kaelin WG
    Genes Dev; 2004 Dec; 18(23):2893-904. PubMed ID: 15545625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia.
    Wolff NC; Vega-Rubin-de-Celis S; Xie XJ; Castrillon DH; Kabbani W; Brugarolas J
    Mol Cell Biol; 2011 May; 31(9):1870-84. PubMed ID: 21383064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of TSC-mTOR pathway in diabetic nephropathy.
    Inoki K
    Diabetes Res Clin Pract; 2008 Nov; 82 Suppl 1():S59-62. PubMed ID: 18926585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells.
    Zhou Y; Wang Q; Guo Z; Weiss HL; Evers BM
    Mol Biol Cell; 2012 Aug; 23(15):2963-72. PubMed ID: 22696685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1.
    Wang H; Kubica N; Ellisen LW; Jefferson LS; Kimball SR
    J Biol Chem; 2006 Dec; 281(51):39128-34. PubMed ID: 17074751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma.
    Schneider A; Younis RH; Gutkind JS
    Neoplasia; 2008 Nov; 10(11):1295-302. PubMed ID: 18953439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis.
    Kimball SR; Do AND; Kutzler L; Cavener DR; Jefferson LS
    J Biol Chem; 2008 Feb; 283(6):3465-3475. PubMed ID: 18070882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive and negative regulation of TSC2 activity and its effects on downstream effectors of the mTOR pathway.
    Jozwiak J; Jozwiak S; Grzela T; Lazarczyk M
    Neuromolecular Med; 2005; 7(4):287-96. PubMed ID: 16391386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuberous sclerosis: from tubers to mTOR.
    Kwiatkowski DJ
    Ann Hum Genet; 2003 Jan; 67(Pt 1):87-96. PubMed ID: 12556239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New roles for Notch in tuberous sclerosis.
    Pear WS
    J Clin Invest; 2010 Jan; 120(1):84-7. PubMed ID: 20038806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1.
    Jin HO; Seo SK; Kim YS; Woo SH; Lee KH; Yi JY; Lee SJ; Choe TB; Lee JH; An S; Hong SI; Park IC
    Oncogene; 2011 Sep; 30(35):3792-801. PubMed ID: 21460850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis.
    Ozcan U; Ozcan L; Yilmaz E; Düvel K; Sahin M; Manning BD; Hotamisligil GS
    Mol Cell; 2008 Mar; 29(5):541-51. PubMed ID: 18342602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumour suppressors hamartin and tuberin: intracellular signalling.
    Krymskaya VP
    Cell Signal; 2003 Aug; 15(8):729-39. PubMed ID: 12781866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of molecular links between PKR and mTOR signalling pathways in Abeta neurotoxicity: role of p53, Redd1 and TSC2.
    Morel M; Couturier J; Pontcharraud R; Gil R; Fauconneau B; Paccalin M; Page G
    Neurobiol Dis; 2009 Oct; 36(1):151-61. PubMed ID: 19631745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
    Kwiatkowski DJ
    Cancer Biol Ther; 2003; 2(5):471-6. PubMed ID: 14614311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.