These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 16259601)
1. Impregnation of plasmid DNA into three-dimensional scaffolds and medium perfusion enhance in vitro DNA expression of mesenchymal stem cells. Hosseinkhani H; Inatsugu Y; Hiraoka Y; Inoue S; Shimokawa H; Tabata Y Tissue Eng; 2005; 11(9-10):1459-75. PubMed ID: 16259601 [TBL] [Abstract][Full Text] [Related]
2. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber. Hosseinkhani H; Inatsugu Y; Hiraoka Y; Inoue S; Tabata Y Tissue Eng; 2005; 11(9-10):1476-88. PubMed ID: 16259602 [TBL] [Abstract][Full Text] [Related]
3. Enhanced ectopic bone formation using a combination of plasmid DNA impregnation into 3-D scaffold and bioreactor perfusion culture. Hosseinkhani H; Yamamoto M; Inatsugu Y; Hiraoka Y; Inoue S; Shimokawa H; Tabata Y Biomaterials; 2006 Mar; 27(8):1387-98. PubMed ID: 16139884 [TBL] [Abstract][Full Text] [Related]
4. Combination of 3D tissue engineered scaffold and non-viral gene carrier enhance in vitro DNA expression of mesenchymal stem cells. Hosseinkhani H; Azzam T; Kobayashi H; Hiraoka Y; Shimokawa H; Domb AJ; Tabata Y Biomaterials; 2006 Aug; 27(23):4269-78. PubMed ID: 16620957 [TBL] [Abstract][Full Text] [Related]
5. Proliferation and differentiation of rat bone marrow stromal cells on poly(glycolic acid)-collagen sponge. Fujita M; Kinoshita Y; Sato E; Maeda H; Ozono S; Negishi H; Kawase T; Hiraoka Y; Takamoto T; Tabata Y; Kameyama Y Tissue Eng; 2005; 11(9-10):1346-55. PubMed ID: 16259590 [TBL] [Abstract][Full Text] [Related]
6. DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. Hosseinkhani H; Hosseinkhani M; Gabrielson NP; Pack DW; Khademhosseini A; Kobayashi H J Biomed Mater Res A; 2008 Apr; 85(1):47-60. PubMed ID: 17688252 [TBL] [Abstract][Full Text] [Related]
7. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. Toosi S; Naderi-Meshkin H; Kalalinia F; Peivandi MT; HosseinKhani H; Bahrami AR; Heirani-Tabasi A; Mirahmadi M; Behravan J J Biomed Mater Res A; 2016 Aug; 104(8):2020-8. PubMed ID: 27059133 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Na K; Kim SW; Sun BK; Woo DG; Yang HN; Chung HM; Park KH Biomaterials; 2007 Jun; 28(16):2631-7. PubMed ID: 17331575 [TBL] [Abstract][Full Text] [Related]
9. Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor. Hosseinkhani H; Hosseinkhani M; Tian F; Kobayashi H; Tabata Y Biomaterials; 2006 Oct; 27(29):5089-98. PubMed ID: 16782187 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Nie H; Wang CH J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber. Hiraoka Y; Kimura Y; Ueda H; Tabata Y Tissue Eng; 2003 Dec; 9(6):1101-12. PubMed ID: 14670098 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
14. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857 [TBL] [Abstract][Full Text] [Related]
15. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298 [TBL] [Abstract][Full Text] [Related]
16. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. Meinel L; Hofmann S; Betz O; Fajardo R; Merkle HP; Langer R; Evans CH; Vunjak-Novakovic G; Kaplan DL Biomaterials; 2006 Oct; 27(28):4993-5002. PubMed ID: 16765437 [TBL] [Abstract][Full Text] [Related]
17. Bone morphogenetic protein-2 in biodegradable gelatin and β-tricalcium phosphate sponges enhances the in vivo bone-forming capability of bone marrow mesenchymal stem cells. Tadokoro M; Matsushima A; Kotobuki N; Hirose M; Kimura Y; Tabata Y; Hattori K; Ohgushi H J Tissue Eng Regen Med; 2012 Apr; 6(4):253-60. PubMed ID: 21548136 [TBL] [Abstract][Full Text] [Related]
18. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Takahashi Y; Yamamoto M; Tabata Y Biomaterials; 2005 Aug; 26(23):4856-65. PubMed ID: 15763265 [TBL] [Abstract][Full Text] [Related]
19. Magnesium calcium phosphate as a novel component enhances mechanical/physical properties of gelatin scaffold and osteogenic differentiation of bone marrow mesenchymal stem cells. Hussain A; Bessho K; Takahashi K; Tabata Y Tissue Eng Part A; 2012 Apr; 18(7-8):768-74. PubMed ID: 21995670 [TBL] [Abstract][Full Text] [Related]
20. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. Tanaka T; Hirose M; Kotobuki N; Tadokoro M; Ohgushi H; Fukuchi T; Sato J; Seto K J Biomed Mater Res A; 2009 Nov; 91(2):428-35. PubMed ID: 18985782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]