BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 16259610)

  • 1. Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis.
    Lee CR; Grad S; Gorna K; Gogolewski S; Goessl A; Alini M
    Tissue Eng; 2005; 11(9-10):1562-73. PubMed ID: 16259610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of multiple chondroitinase ABC applications on tissue engineered articular cartilage.
    Natoli RM; Responte DJ; Lu BY; Athanasiou KA
    J Orthop Res; 2009 Jul; 27(7):949-56. PubMed ID: 19123232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells.
    Iseki T; Rothrauff BB; Kihara S; Sasaki H; Yoshiya S; Fu FH; Tuan RS; Gottardi R
    Am J Sports Med; 2019 Jul; 47(9):2188-2199. PubMed ID: 31307219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.
    Skaalure SC; Chu S; Bryant SJ
    Adv Healthc Mater; 2015 Feb; 4(3):420-31. PubMed ID: 25296398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering by molecular disassembly and reassembly: biomimetic retention of mechanically functional aggrecan in hydrogel.
    Han EH; Wilensky LM; Schumacher BL; Chen AC; Masuda K; Sah RL
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1471-9. PubMed ID: 20486781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo.
    Yang L; Li X; Wu Y; Du P; Sun L; Yu Z; Song S; Yin J; Ma X; Jing C; Zhao J; Chen H; Dong Y; Zhang Q; Zhao L
    Int J Nanomedicine; 2020; 15():8697-8715. PubMed ID: 33192062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.
    Sinthuvanich C; Haines-Butterick LA; Nagy KJ; Schneider JP
    Biomaterials; 2012 Oct; 33(30):7478-88. PubMed ID: 22841922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modular approach to creating large engineered cartilage surfaces.
    Ford AC; Chui WF; Zeng AY; Nandy A; Liebenberg E; Carraro C; Kazakia G; Alliston T; O'Connell GD
    J Biomech; 2018 Jan; 67():177-183. PubMed ID: 29273221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression-induced structural and mechanical changes of fibrin-collagen composites.
    Kim OV; Litvinov RI; Chen J; Chen DZ; Weisel JW; Alber MS
    Matrix Biol; 2017 Jul; 60-61():141-156. PubMed ID: 27751946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use.
    Seixas MJ; Martins E; Reis RL; Silva TH
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33291538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-well bioreactor for cartilage tissue engineering experiments.
    Ladner YD; Kasper H; Armiento AR; Stoddart MJ
    iScience; 2023 Jul; 26(7):107092. PubMed ID: 37408683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression.
    Alizadeh Sardroud H; Chen X; Eames BF
    J Funct Biomater; 2023 Jun; 14(6):. PubMed ID: 37367278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applied Compressive Strain Governs Hyaline-like Cartilage versus Fibrocartilage-like ECM Produced within Hydrogel Constructs.
    Alizadeh Sardroud H; Chen X; Eames BF
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-culture of Human Articular Chondrocytes Seeded in Polyurethane Scaffolds and Human Mesenchymal Stromal Cells Encapsulated in Alginate Beads.
    Brose TZ; Ladner YD; Kubosch EJ; Stoddart MJ; Armiento AR
    Methods Mol Biol; 2023; 2598():177-186. PubMed ID: 36355292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degradation of gelatin/alginate/fibrin hydrogels is cell type dependent and can be modulated by targeting fibrinolysis.
    Boucard E; Vidal L; Coulon F; Mota C; Hascoët JY; Halary F
    Front Bioeng Biotechnol; 2022; 10():920929. PubMed ID: 35935486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation.
    Xu F; Dawson C; Lamb M; Mueller E; Stefanek E; Akbari M; Hoare T
    Front Bioeng Biotechnol; 2022; 10():849831. PubMed ID: 35600900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded.
    Alizadeh Sardroud H; Wanlin T; Chen X; Eames BF
    Front Bioeng Biotechnol; 2021; 9():787538. PubMed ID: 35096790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation Behaviour of Adipose-Derived Stromal Cells (ASCs) Seeded on Polyurethane-Fibrin Scaffolds In Vitro and In Vivo.
    Radeloff K; Weiss D; Hagen R; Kleinsasser N; Radeloff A
    Biomedicines; 2021 Aug; 9(8):. PubMed ID: 34440186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.
    Zhao X; Chen X; Yuk H; Lin S; Liu X; Parada G
    Chem Rev; 2021 Apr; 121(8):4309-4372. PubMed ID: 33844906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications.
    Campos F; Bonhome-Espinosa AB; Chato-Astrain J; Sánchez-Porras D; García-García ÓD; Carmona R; López-López MT; Alaminos M; Carriel V; Rodriguez IA
    Front Bioeng Biotechnol; 2020; 8():596. PubMed ID: 32612984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.