BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16259613)

  • 1. Tissue-engineered hybrid tooth and bone.
    Young CS; Abukawa H; Asrican R; Ravens M; Troulis MJ; Kaban LB; Vacanti JP; Yelick PC
    Tissue Eng; 2005; 11(9-10):1599-610. PubMed ID: 16259613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered teeth from cultured rat tooth bud cells.
    Duailibi MT; Duailibi SE; Young CS; Bartlett JD; Vacanti JP; Yelick PC
    J Dent Res; 2004 Jul; 83(7):523-8. PubMed ID: 15218040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineered dental tissues grown in the rat jaw.
    Duailibi SE; Duailibi MT; Zhang W; Asrican R; Vacanti JP; Yelick PC
    J Dent Res; 2008 Aug; 87(8):745-50. PubMed ID: 18650546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stress facilitates tissue-engineered odontogenesis.
    Honda MJ; Shinohara Y; Sumita Y; Tonomura A; Kagami H; Ueda M
    Bone; 2006 Jul; 39(1):125-33. PubMed ID: 16469551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs.
    Abukawa H; Zhang W; Young CS; Asrican R; Vacanti JP; Kaban LB; Troulis MJ; Yelick PC
    J Oral Maxillofac Surg; 2009 Feb; 67(2):335-47. PubMed ID: 19138608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds.
    Young CS; Terada S; Vacanti JP; Honda M; Bartlett JD; Yelick PC
    J Dent Res; 2002 Oct; 81(10):695-700. PubMed ID: 12351668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Experimental study on the development of tissue-engineered tooth germ with heterotopic allotransplantation].
    Nie X; Jin Y; Long J; Wu L; Jing W; Lin YF; Tian WD
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2008 Mar; 39(2):279-82. PubMed ID: 18630703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions.
    Inanc B; Elcin AE; Elcin YM
    Tissue Eng; 2006 Feb; 12(2):257-66. PubMed ID: 16548684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of a mandibular condyle in vitro by tissue engineering.
    Abukawa H; Terai H; Hannouche D; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2003 Jan; 61(1):94-100. PubMed ID: 12524615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study.
    Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R
    Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological and immunohistochemical studies of tissue engineered odontogenesis.
    Honda MJ; Sumita Y; Kagami H; Ueda M
    Arch Histol Cytol; 2005 Jun; 68(2):89-101. PubMed ID: 16079455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering.
    Sumita Y; Honda MJ; Ohara T; Tsuchiya S; Sagara H; Kagami H; Ueda M
    Biomaterials; 2006 Jun; 27(17):3238-48. PubMed ID: 16504285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of mandibular defects with autologous tissue-engineered bone.
    Abukawa H; Shin M; Williams WB; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2004 May; 62(5):601-6. PubMed ID: 15122567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineered teeth from tooth bud cells.
    Yelick PC; Vacanti JP
    Dent Clin North Am; 2006 Apr; 50(2):191-203, viii. PubMed ID: 16530057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo matrix production by bone marrow stromal cells seeded on PLGA scaffolds for ligament tissue engineering.
    van Eijk F; Saris DB; Fedorovich NE; Kruyt MC; Willems WJ; Verbout AJ; Martens AC; Dhert WJ; Creemers L
    Tissue Eng Part A; 2009 Oct; 15(10):3109-17. PubMed ID: 19338450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo.
    Cai X; Yang F; Yan X; Yang W; Yu N; Oortgiesen DA; Wang Y; Jansen JA; Walboomers XF
    J Clin Periodontol; 2015 Apr; 42(4):380-9. PubMed ID: 25692209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber.
    Hosseinkhani H; Inatsugu Y; Hiraoka Y; Inoue S; Tabata Y
    Tissue Eng; 2005; 11(9-10):1476-88. PubMed ID: 16259602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental formation of dentin-like structure in the root canal implant model using cryopreserved swine dental pulp progenitor cells.
    Kodonas K; Gogos C; Papadimitriou S; Kouzi-Koliakou K; Tziafas D
    J Endod; 2012 Jul; 38(7):913-9. PubMed ID: 22703653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.