These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 16259752)
1. Hydrodynamic simulation (computational fluid dynamics) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability. D'Arcy DM; Corrigan OI; Healy AM J Pharm Pharmacol; 2005 Oct; 57(10):1243-50. PubMed ID: 16259752 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications. D'Arcy DM; Corrigan OI; Healy AM Eur J Pharm Sci; 2006 Feb; 27(2-3):259-67. PubMed ID: 16314078 [TBL] [Abstract][Full Text] [Related]
3. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities. McCarthy LG; Bradley G; Sexton JC; Corrigan OI; Healy AM AAPS PharmSciTech; 2004 Apr; 5(2):e31. PubMed ID: 15760089 [TBL] [Abstract][Full Text] [Related]
4. Investigating the effect of solubility and density gradients on local hydrodynamics and drug dissolution in the USP 4 dissolution apparatus. D'Arcy DM; Liu B; Corrigan OI Int J Pharm; 2011 Oct; 419(1-2):175-85. PubMed ID: 21843609 [TBL] [Abstract][Full Text] [Related]
5. Towards determining appropriate hydrodynamic conditions for in vitro in vivo correlations using computational fluid dynamics. D'Arcy DM; Healy AM; Corrigan OI Eur J Pharm Sci; 2009 Jun; 37(3-4):291-9. PubMed ID: 19491018 [TBL] [Abstract][Full Text] [Related]
6. Drug dissolution rate measurements--evaluation of the rotating disc method. Kaunisto E; Nilsson B; Axelsson A Pharm Dev Technol; 2009; 14(4):400-8. PubMed ID: 19235631 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamics-induced variability in the USP apparatus II dissolution test. Baxter JL; Kukura J; Muzzio FJ Int J Pharm; 2005 Mar; 292(1-2):17-28. PubMed ID: 15725550 [TBL] [Abstract][Full Text] [Related]
8. Effects of oxygen plasma treatment on the surface wettability and dissolution of furosemide compacts. Naseem A; Olliff CJ; Martini LG; Lloyd AW J Pharm Pharmacol; 2003 Nov; 55(11):1473-8. PubMed ID: 14713357 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modeling of the fluid dynamics in the flow-through cell. Kakhi M Int J Pharm; 2009 Jul; 376(1-2):22-40. PubMed ID: 19375490 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of dissolution rate to location in the paddle dissolution apparatus. Healy AM; McCarthy LG; Gallagher KM; Corrigan OI J Pharm Pharmacol; 2002 Mar; 54(3):441-4. PubMed ID: 11902812 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing. Bai G; Armenante PM J Pharm Sci; 2009 Apr; 98(4):1511-31. PubMed ID: 18781589 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the USP dissolution test method A for enteric-coated articles by planar laser-induced fluorescence. Miller DA; Gamba M; Sauer D; Purvis TP; Clemens NT; Williams RO Int J Pharm; 2007 Feb; 330(1-2):61-72. PubMed ID: 17034967 [TBL] [Abstract][Full Text] [Related]
13. Improved drug dissolution and product characterization using a crescent-shaped spindle. Qureshi SA J Pharm Pharmacol; 2004 Sep; 56(9):1135-41. PubMed ID: 15324482 [TBL] [Abstract][Full Text] [Related]
14. Assessment of disintegration of rapidly disintegrating tablets by a visiometric liquid jet-mediated disintegration apparatus. Desai PM; Liew CV; Heng PW Int J Pharm; 2013 Feb; 442(1-2):65-73. PubMed ID: 22985772 [TBL] [Abstract][Full Text] [Related]
15. Shear distribution and variability in the USP Apparatus 2 under turbulent conditions. Kukura J; Baxter JL; Muzzio FJ Int J Pharm; 2004 Jul; 279(1-2):9-17. PubMed ID: 15234789 [TBL] [Abstract][Full Text] [Related]
16. Computational fluid dynamics simulation of hydrodynamics in USP apparatus 3-the influence of dip rate. Perivilli S; Kakhi M; Stippler E Pharm Res; 2015 Apr; 32(4):1304-15. PubMed ID: 25407541 [TBL] [Abstract][Full Text] [Related]
17. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics. Kindgen S; Wachtel H; Abrahamsson B; Langguth P J Pharm Sci; 2015 Sep; 104(9):2956-68. PubMed ID: 26017815 [TBL] [Abstract][Full Text] [Related]
18. Comparative Evaluation of Dissolution Performance in a USP 2 Setup and Alternative Stirrers and Vessel Designs: A Systematic Computational Investigation. Salehi N; Al-Gousous J; Hens B; Amidon GL; Ziff RM; Amidon GE Mol Pharm; 2024 May; 21(5):2406-2414. PubMed ID: 38639477 [TBL] [Abstract][Full Text] [Related]
19. Experimental and computational determination of the hydrodynamics of mini vessel dissolution testing systems. Wang B; Armenante PM Int J Pharm; 2016 Aug; 510(1):336-49. PubMed ID: 27317988 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Javadzadeh Y; Siahi-Shadbad MR; Barzegar-Jalali M; Nokhodchi A Farmaco; 2005 Apr; 60(4):361-5. PubMed ID: 15848213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]