These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 16260140)

  • 1. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo.
    Benoit DL; Ramsey DK; Lamontagne M; Xu L; Wretenberg P; Renström P
    Gait Posture; 2006 Oct; 24(2):152-64. PubMed ID: 16260140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations.
    Benoit DL; Ramsey DK; Lamontagne M; Xu L; Wretenberg P; Renström P
    Clin Orthop Relat Res; 2007 Jan; 454():81-8. PubMed ID: 17202918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the influence of soft tissue coverage in the determination of bone kinematics using skin markers.
    Taylor WR; Ehrig RM; Duda GN; Schell H; Seebeck P; Heller MO
    J Orthop Res; 2005 Jul; 23(4):726-34. PubMed ID: 16022983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional kinematics of the human knee with intracortical pin fixation.
    Ishii Y; Terajima K; Terashima S; Koga Y
    Clin Orthop Relat Res; 1997 Oct; (343):144-50. PubMed ID: 9345219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical solution to reduce soft tissue artifact error at the knee using adaptive kinematic constraints.
    Potvin BM; Shourijeh MS; Smale KB; Benoit DL
    J Biomech; 2017 Sep; 62():124-131. PubMed ID: 28291516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics.
    Andersen MS; Benoit DL; Damsgaard M; Ramsey DK; Rasmussen J
    J Biomech; 2010 Jan; 43(2):268-73. PubMed ID: 19879581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Femoral Epicondylar Frame to track femoral rotation in optoelectronic gait analysis.
    Zürcher AW; Wolterbeek N; Valstar ER; Nelissen RG; Pöll RG; Harlaar J
    Gait Posture; 2011 Feb; 33(2):306-8. PubMed ID: 21146411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproduction of in vivo motion using a parallel robot.
    Howard RA; Rosvold JM; Darcy SP; Corr DT; Shrive NG; Tapper JE; Ronsky JL; Beveridge JE; Marchuk LL; Frank CB
    J Biomech Eng; 2007 Oct; 129(5):743-9. PubMed ID: 17887900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers.
    Garling EH; Kaptein BL; Mertens B; Barendregt W; Veeger HE; Nelissen RG; Valstar ER
    J Biomech; 2007; 40 Suppl 1():S18-24. PubMed ID: 17462655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional kinematics of the human knee during walking.
    Lafortune MA; Cavanagh PR; Sommer HJ; Kalenak A
    J Biomech; 1992 Apr; 25(4):347-57. PubMed ID: 1583014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of anatomical landmark misplacement to knee kinematics: performance of single and double calibration.
    Stagni R; Fantozzi S; Cappello A
    Gait Posture; 2006 Oct; 24(2):137-41. PubMed ID: 16934471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the optimal locations of surface-mounted markers on the tibial segment.
    Peters A; Sangeux M; Morris ME; Baker R
    Gait Posture; 2009 Jan; 29(1):42-8. PubMed ID: 18678490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping.
    Gushue DL; Houck J; Lerner AL
    J Orthop Res; 2005 Jul; 23(4):735-42. PubMed ID: 16022984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty.
    Barre A; Thiran JP; Jolles BM; Theumann N; Aminian K
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3131-40. PubMed ID: 23782791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking.
    Thambyah A; Pereira BP; Wyss U
    Knee; 2005 Oct; 12(5):383-8. PubMed ID: 16146627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of passive flexion-extension to normal gait in the ovine stifle joint.
    Darcy SP; Rosvold JM; Beveridge JE; Corr DT; Brown JJ; Sutherland CA; Marchuk LL; Frank CB; Shrive NG
    J Biomech; 2008; 41(4):854-60. PubMed ID: 18093599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait analysis system for assessment of dynamic loading axis of the knee.
    Kawakami H; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Hattori A; Suzuki N
    Gait Posture; 2005 Jan; 21(1):125-30. PubMed ID: 15536041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.