These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16260158)

  • 21. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption.
    Sugui JA; Chang YC; Kwon-Chung KJ
    Appl Environ Microbiol; 2005 Apr; 71(4):1798-802. PubMed ID: 15812003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.
    Zhang Jj; Shi L; Chen H; Sun Yq; Zhao Mw; Ren A; Chen Mj; Wang H; Feng Zy
    Microbiol Res; 2014; 169(9-10):741-8. PubMed ID: 24612605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental prevalence of Cryptococcus neoformans and Cryptococcus gattii in India: an update.
    Chowdhary A; Rhandhawa HS; Prakash A; Meis JF
    Crit Rev Microbiol; 2012 Feb; 38(1):1-16. PubMed ID: 22133016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic Transformation of Cryptococcus Species with Agrobacterium Transfer DNA.
    Chong NF; Idnurm A; Nugent BC
    Methods Mol Biol; 2024; 2775():81-90. PubMed ID: 38758312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the
    Fan Y; Lin X
    Genetics; 2018 Apr; 208(4):1357-1372. PubMed ID: 29444806
    [No Abstract]   [Full Text] [Related]  

  • 26. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis.
    Yu M; Yu J; Hu J; Huang L; Wang Y; Yin X; Nie Y; Meng X; Wang W; Liu Y
    Fungal Genet Biol; 2015 Mar; 76():10-9. PubMed ID: 25636735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis.
    Idnurm A; Reedy JL; Nussbaum JC; Heitman J
    Eukaryot Cell; 2004 Apr; 3(2):420-9. PubMed ID: 15075272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dominant selection system for use in Cryptococcus neoformans.
    Cox GM; Toffaletti DL; Perfect JR
    J Med Vet Mycol; 1996; 34(6):385-91. PubMed ID: 8971627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene disruption in Cryptococcus neoformans and Cryptococcus gattii by in vitro transposition.
    Hu G; Kronstad JW
    Curr Genet; 2006 May; 49(5):341-50. PubMed ID: 16397763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameters affecting the efficiency of Agrobacterium tumefaciens-mediated transformation of Colletotrichum graminicola.
    Flowers JL; Vaillancourt LJ
    Curr Genet; 2005 Dec; 48(6):380-8. PubMed ID: 16292539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing Transformation Frequency of
    Fu J; Brockman NE; Wickes BL
    J Fungi (Basel); 2021 Jun; 7(7):. PubMed ID: 34209781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation.
    Edman JC; Kwon-Chung KJ
    Mol Cell Biol; 1990 Sep; 10(9):4538-44. PubMed ID: 2201894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotype and mating type analysis of Cryptococcus neoformans and Cryptococcus gattii isolates from China that mainly originated from non-HIV-infected patients.
    Feng X; Yao Z; Ren D; Liao W; Wu J
    FEMS Yeast Res; 2008 Sep; 8(6):930-8. PubMed ID: 18671745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Serotyping of 27 Cryptococcus neoformans strains isolated in Venezuela].
    Villanueva E; Mendoza M; Torres E; de Albornoz MB; Cavazza ME; Urbina G
    Acta Cient Venez; 1989; 40(2):151-4. PubMed ID: 2701256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restriction fragment polymorphism in mitochondrial DNA of Cryptococcus neoformans.
    Varma A; Kwon-Chung KJ
    J Gen Microbiol; 1989 Dec; 135(12):3353-62. PubMed ID: 2576873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system.
    Lin J; Fan Y; Lin X
    Fungal Genet Biol; 2020 May; 138():103364. PubMed ID: 32142753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae.
    Liu N; Chen GQ; Ning GA; Shi HB; Zhang CL; Lu JP; Mao LJ; Feng XX; Liu XH; Su ZZ; Lin FC
    Microbiol Res; 2016 Jan; 182():40-8. PubMed ID: 26686612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of Cryptococcus gattii and Cryptococcus neoformans in decayed trunk wood of Syzygium cumini trees in north-western India.
    Randhawa HS; Kowshik T; Preeti Sinha K; Chowdhary A; Khan ZU; Yan Z; Xu J; Kumar A
    Med Mycol; 2006 Nov; 44(7):623-30. PubMed ID: 17071556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.
    Zhang T; Ren P; Chaturvedi V; Chaturvedi S
    Fungal Genet Biol; 2015 Aug; 81():73-81. PubMed ID: 26051491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst Cryptococcus species obtained from Italian veterinary isolates.
    Danesi P; Firacative C; Cogliati M; Otranto D; Capelli G; Meyer W
    FEMS Yeast Res; 2014 Sep; 14(6):897-909. PubMed ID: 24981157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.