BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16260195)

  • 1. Age-related change in the damage morphology of human cortical bone and its role in bone fragility.
    Diab T; Condon KW; Burr DB; Vashishth D
    Bone; 2006 Mar; 38(3):427-31. PubMed ID: 16260195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of damage morphology on cortical bone fragility.
    Diab T; Vashishth D
    Bone; 2005 Jul; 37(1):96-102. PubMed ID: 15897021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-dependent fatigue behaviour of human cortical bone.
    Diab T; Sit S; Kim D; Rho J; Vashishth D
    Eur J Morphol; 2005; 42(1-2):53-9. PubMed ID: 16123024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology, localization and accumulation of in vivo microdamage in human cortical bone.
    Diab T; Vashishth D
    Bone; 2007 Mar; 40(3):612-8. PubMed ID: 17097933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage type and strain mode associations in human compact bone bending fatigue.
    Boyce TM; Fyhrie DP; Glotkowski MC; Radin EL; Schaffler MB
    J Orthop Res; 1998 May; 16(3):322-9. PubMed ID: 9671927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdamage accumulation in bovine trabecular bone in uniaxial compression.
    Arthur Moore TL; Gibson LJ
    J Biomech Eng; 2002 Feb; 124(1):63-71. PubMed ID: 11873773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone microdamage and skeletal fragility in osteoporotic and stress fractures.
    Burr DB; Forwood MR; Fyhrie DP; Martin RB; Schaffler MB; Turner CH
    J Bone Miner Res; 1997 Jan; 12(1):6-15. PubMed ID: 9240720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging and matrix microdamage accumulation in human compact bone.
    Schaffler MB; Choi K; Milgrom C
    Bone; 1995 Dec; 17(6):521-25. PubMed ID: 8835305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging and strength of bone as a structural material.
    Martin B
    Calcif Tissue Int; 1993; 53 Suppl 1():S34-9; discussion S39-40. PubMed ID: 8275378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdamage in bone: implications for fracture, repair, remodeling, and adaptation.
    Donahue SW; Galley SA
    Crit Rev Biomed Eng; 2006; 34(3):215-71. PubMed ID: 16930125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in human trabecular bone: Relationship between microstructural stress and strain and damage morphology.
    Green JO; Nagaraja S; Diab T; Vidakovic B; Guldberg RE
    J Biomech; 2011 Aug; 44(12):2279-85. PubMed ID: 21724189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.