These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16260285)

  • 61. Sulfur-mediated electron shuttling during bacterial iron reduction.
    Flynn TM; O'Loughlin EJ; Mishra B; DiChristina TJ; Kemner KM
    Science; 2014 May; 344(6187):1039-42. PubMed ID: 24789972
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Oxidation and coagulation of humic substances by potassium ferrate.
    Graham NJ; Khoi TT; Jiang JQ
    Water Sci Technol; 2010; 62(4):929-36. PubMed ID: 20729598
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Polarity and molecular weight of compost-derived humic acid affect Fe(III) oxides reduction.
    Yuan Y; He X; Xi B; Li D; Gao R; Tan W; Zhang H; Yang C; Zhao X
    Chemosphere; 2018 Oct; 208():77-83. PubMed ID: 29860147
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Formation of volatile iodinated alkanes in soil: results from laboratory studies.
    Keppler F; Borchers R; Elsner P; Fahimi I; Pracht J; Schöler HF
    Chemosphere; 2003 Jul; 52(2):477-83. PubMed ID: 12738273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Electron shuttling function of dissolved organic matter].
    Xu W; Hu P; Zhou SG; Li XM; Li YH
    Huan Jing Ke Xue; 2009 Aug; 30(8):2297-301. PubMed ID: 19799291
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron.
    Sherwood MK; Cassidy DP
    Chemosphere; 2014 Oct; 113():56-61. PubMed ID: 25065790
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Influence of humic acid type on the oxidation products of pentachlorophenol using hybrid catalysts prepared by introducing iron(III)-5,10,15,20-tetrakis(p-hydroxyphenyl) porphyrin into hydroquinone-derived humic acids.
    Fukushima M; Shigematsu S; Nagao S
    Chemosphere; 2010 Feb; 78(9):1155-9. PubMed ID: 20042219
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface.
    Jackson A; Gaffney JW; Boult S
    Environ Sci Technol; 2012 Jul; 46(14):7543-50. PubMed ID: 22712619
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
    Weber KA; Achenbach LA; Coates JD
    Nat Rev Microbiol; 2006 Oct; 4(10):752-64. PubMed ID: 16980937
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2.
    Yacob T; Pandey S; Silverstein J; Rajaram H
    Environ Sci Technol; 2013 Aug; 47(15):8658-65. PubMed ID: 23777272
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.
    Hori T; Aoyagi T; Itoh H; Narihiro T; Oikawa A; Suzuki K; Ogata A; Friedrich MW; Conrad R; Kamagata Y
    Front Microbiol; 2015; 6():386. PubMed ID: 25999927
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Isolation and Cultivation of Anaerobes.
    Börner RA
    Adv Biochem Eng Biotechnol; 2016; 156():35-53. PubMed ID: 27028132
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fulvic acid oxidation state detection using fluorescence spectroscopy.
    Klapper L; McKnight DM; Fulton JR; Blunt-Harris EL; Nevin KP; Lovley DR; Hatcher PG
    Environ Sci Technol; 2002 Jul; 36(14):3170-5. PubMed ID: 12141500
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthetic iron complexes as models for natural iron-humic compounds: Synthesis, characterization and algal growth experiments.
    Orlowska E; Roller A; Pignitter M; Jirsa F; Krachler R; Kandioller W; Keppler BK
    Sci Total Environ; 2017 Jan; 577():94-104. PubMed ID: 27810305
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.
    Johnson DB; Bridge TA
    J Appl Microbiol; 2002; 92(2):315-21. PubMed ID: 11849360
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.
    Fujii M; Imaoka A; Yoshimura C; Waite TD
    Environ Sci Technol; 2014 Apr; 48(8):4414-24. PubMed ID: 24635730
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Improved Isolation of Uncultured Anaerobic Bacteria using Medium Prepared with Separate Sterilization of Agar and Phosphate.
    Kato S; Terashima M; Yama A; Sato M; Kitagawa W; Kawasaki K; Kamagata Y
    Microbes Environ; 2020; 35(1):. PubMed ID: 32009018
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Isolation and characterization of metal-reducing thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado.
    Roh Y; Liu SV; Li G; Huang H; Phelps TJ; Zhou J
    Appl Environ Microbiol; 2002 Dec; 68(12):6013-20. PubMed ID: 12450823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.