These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16260378)
1. Assessment of in situ cellular glutathione labeling with naphthalene-2,3-dicarboxaldehyde using high-performance liquid chromatography. Diez L; Martenka E; Dabrowska A; Coulon J; Leroy P J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 827(1):44-50. PubMed ID: 16260378 [TBL] [Abstract][Full Text] [Related]
2. Enhanced cellular uptake of a glutathione selective fluorogenic probe encapsulated in nanoparticles. Główka E; Lamprecht A; Ubrich N; Maincent P; Lulek J; Coulon J; Leroy P Nanotechnology; 2006 May; 17(10):2546-52. PubMed ID: 21727503 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of naphthalene-2,3-dicarboxaldehyde and o-phthalaldehyde fluorogenic reagents for chromatographic detection of sphingoid bases. Cho YH; Yoo HS; Min JK; Lee EY; Hong SP; Chung YB; Lee YM J Chromatogr A; 2002 Nov; 977(1):69-76. PubMed ID: 12456096 [TBL] [Abstract][Full Text] [Related]
4. Fast determination of glutathione by capillary electrophoresis with fluorescence detection using beta-cyclodextrin as modifier. Zhang LY; Sun MX J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Dec; 877(31):4051-4. PubMed ID: 19858002 [TBL] [Abstract][Full Text] [Related]
5. The use of naphthalene-2,3-dicarboxaldehyde for the analysis of primary amines using high-performance liquid chromatography and capillary electrophoresis. Rammouz G; Lacroix M; Garrigues JC; Poinsot V; Couderc F Biomed Chromatogr; 2007 Dec; 21(12):1223-39. PubMed ID: 17939173 [TBL] [Abstract][Full Text] [Related]
6. Determination of glutathione in biological samples by high performance liquid chromatography with fluorescence detection. Gotti R; Andrisano V; Gatti R; Cavrini V; Candeletti S Biomed Chromatogr; 1994; 8(6):306-8. PubMed ID: 7888735 [TBL] [Abstract][Full Text] [Related]
7. High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Gao N; Li L; Shi Z; Zhang X; Jin W Electrophoresis; 2007 Nov; 28(21):3966-75. PubMed ID: 17922501 [TBL] [Abstract][Full Text] [Related]
8. Development of a fluorescence-based microtiter plate method for the measurement of glutathione in yeast. Lewicki K; Marchand S; Matoub L; Lulek J; Coulon J; Leroy P Talanta; 2006 Nov; 70(4):876-82. PubMed ID: 18970853 [TBL] [Abstract][Full Text] [Related]
9. Determination of aliphatic amines by high-performance liquid chromatography-amperometric detection after derivatization with naphthalene-2,3-dicarboxaldehyde. Lamba S; Pandit A; Sanghi SK; Gowri VS; Tiwari A; Baderia VK; Singh DK; Nigam P Anal Chim Acta; 2008 May; 614(2):190-5. PubMed ID: 18420050 [TBL] [Abstract][Full Text] [Related]
10. A HPLC fluorescence-based method for glutathione derivatives quantification in must and wine. Marchand S; de Revel G Anal Chim Acta; 2010 Feb; 660(1-2):158-63. PubMed ID: 20103157 [TBL] [Abstract][Full Text] [Related]
11. Determining glutathione and glutathione disulfide using the fluorescence probe o-phthalaldehyde. Senft AP; Dalton TP; Shertzer HG Anal Biochem; 2000 Apr; 280(1):80-6. PubMed ID: 10805524 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous measurement of reactive oxygen species and reduced glutathione using capillary electrophoresis and laser-induced fluorescence detection in cultured cell lines. Parmentier C; Wellman M; Nicolas A; Siest G; Leroy P Electrophoresis; 1999 Oct; 20(14):2938-44. PubMed ID: 10546831 [TBL] [Abstract][Full Text] [Related]
13. New high-performance liquid chromatographic method for sensitive determination of pheomelanin in biological materials by precolumn fluorescence derivatization with naphthalene-2,3-dicarboxaldehyde. Yang Q; Zhang XL; Ma M; Huang KJ; Zhang JX; Ni WZ; Fang CX; Zheng CY J Chromatogr A; 2007 Mar; 1146(1):23-31. PubMed ID: 17316662 [TBL] [Abstract][Full Text] [Related]
14. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Gao J; Yin XF; Fang ZL Lab Chip; 2004 Feb; 4(1):47-52. PubMed ID: 15007440 [TBL] [Abstract][Full Text] [Related]
15. Quantitative detection of nitroxyl upon trapping with glutathione and labeling with a specific fluorogenic reagent. Johnson GM; Chozinski TJ; Salmon DJ; Moghaddam AD; Chen HC; Miranda KM Free Radic Biol Med; 2013 Oct; 63():476-84. PubMed ID: 23685286 [TBL] [Abstract][Full Text] [Related]
16. A comparison of fluorescamine and naphthalene-2,3-dicarboxaldehyde fluorogenic reagents for microplate-based detection of amino acids. Bantan-Polak T; Kassai M; Grant KB Anal Biochem; 2001 Oct; 297(2):128-36. PubMed ID: 11673879 [TBL] [Abstract][Full Text] [Related]
17. Investigating of labelling and detection of transthyretin synthetic peptide derivatized with naphthalene-2,3-dicarboxaldehyde. Faure M; Korchane S; Le Potier I; Pallandre A; Deslouis C; Haghiri-Gosnet AM; Gamby J Talanta; 2013 Nov; 116():8-13. PubMed ID: 24148365 [TBL] [Abstract][Full Text] [Related]
18. Quantitative analysis of sphingosine-1-phosphate by HPLC after napthalene-2,3-dicarboxaldehyde (NDA) derivatization. He X; Huang CL; Schuchman EH J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Apr; 877(10):983-90. PubMed ID: 19285924 [TBL] [Abstract][Full Text] [Related]
19. HPLC analysis of human erythrocytic glutathione forms using OPA and N-acetyl-cysteine ethyl ester: evidence for nitrite-induced GSH oxidation to GSSG. Michaelsen JT; Dehnert S; Giustarini D; Beckmann B; Tsikas D J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3405-17. PubMed ID: 19665947 [TBL] [Abstract][Full Text] [Related]
20. Second-order calibration of excitation-emission matrix fluorescence spectra for determination of glutathione in human plasma. Hemmateenejad B; Rezaei Z; Zaeri S Talanta; 2009 Aug; 79(3):648-56. PubMed ID: 19576425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]