BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16260683)

  • 1. Tissue restoration after resorption of polyglycolide and poly-laevo-lactic acid screws.
    Böstman OM; Laitinen OM; Tynninen O; Salminen ST; Pihlajamäki HK
    J Bone Joint Surg Br; 2005 Nov; 87(11):1575-80. PubMed ID: 16260683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prospective trial of poly-L-lactic/polyglycolic acid co-polymer plates and screws for internal fixation of mandibular fractures.
    Ferretti C
    Int J Oral Maxillofac Surg; 2008 Mar; 37(3):242-8. PubMed ID: 18295449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of tissue components after insertion of absorbable fracture fixation devices of polyglycolide through the articular surface: an experimental study in the distal rabbit femur.
    Böstman O; Päivärinta U
    J Orthop Res; 1994 May; 12(3):403-11. PubMed ID: 8207594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue response to poly-L-lactide acid-polyglycolic acid absorbable screws in autogenous bone grafts: a histologic morphological analysis.
    Matsumoto MA; Filho HN; Padovan LE; Kawakami RY; De Assis Taveira LA
    Clin Oral Implants Res; 2005 Feb; 16(1):112-8. PubMed ID: 15642038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fate of resorbable poly-L-lactic/polyglycolic acid (LactoSorb) bone fixation devices in orthognathic surgery.
    Edwards RC; Kiely KD; Eppley BL
    J Oral Maxillofac Surg; 2001 Jan; 59(1):19-25. PubMed ID: 11152185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies.
    Böstman O; Päivärinta U; Partio E; Vasenius J; Manninen M; Rokkanen P
    J Bone Joint Surg Am; 1992 Aug; 74(7):1021-31. PubMed ID: 1325971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resorbable bone fixation: its potential role in cranio-maxillofacial trauma.
    Eppley BL; Prevel CD; Sadove AM; Sarver D
    J Craniomaxillofac Trauma; 1996; 2(1):56-60. PubMed ID: 11951475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigid internal fixation with titanium versus bioresorbable miniplates in the repair of mandibular fractures in rabbits.
    Hochuli-Vieira E; Cabrini Gabrielli MA; Pereira-Filho VA; Gabrielli MF; Padilha JG
    Int J Oral Maxillofac Surg; 2005 Mar; 34(2):167-73. PubMed ID: 15695046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation of osteotomies using bioabsorbable screws in the canine femur.
    An YH; Friedman RJ; Powers DL; Draughn RA; Latour RA
    Clin Orthop Relat Res; 1998 Oct; (355):300-11. PubMed ID: 9917616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tissue-implant interface during degradation of absorbable polyglycolide fracture fixation screws in the rabbit femur.
    Böstman OM; Päivärinta U; Partio E; Manninen M; Vasenius J; Majola A; Rokkanen P
    Clin Orthop Relat Res; 1992 Dec; (285):263-72. PubMed ID: 1332836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complications after zygoma fracture fixation: is there a difference between biodegradable materials and how do they compare with titanium osteosynthesis?
    Wittwer G; Adeyemo WL; Yerit K; Voracek M; Turhani D; Watzinger F; Enislidis G
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2006 Apr; 101(4):419-25. PubMed ID: 16545702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficacy of bioresorbable fixation in the repair of mandibular fractures: an animal study.
    Quereshy FA; Goldstein JA; Goldberg JS; Beg Z
    J Oral Maxillofac Surg; 2000 Nov; 58(11):1263-9. PubMed ID: 11078138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polylactide and polyglycolide sponge used in human extraction sockets: bone formation following 3 months after its application.
    Serino G; Rao W; Iezzi G; Piattelli A
    Clin Oral Implants Res; 2008 Jan; 19(1):26-31. PubMed ID: 17944966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Osteosynthesis using polyglycolide fixation devices].
    Dudko GEko PF; Drachuk PS; Zinchenko AT; Borldavka PS
    Ortop Travmatol Protez; 1989 Nov; (11):13-5. PubMed ID: 2561012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation of zygomatic fractures with a biodegradable copolymer osteosynthesis system: short- and long-term results.
    Enislidis G; Lagogiannis G; Wittwer G; Glaser C; Ewers R
    Int J Oral Maxillofac Surg; 2005 Jan; 34(1):19-26. PubMed ID: 15617962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [In vivo study of degradation of poly-(D,L-) lactide and poly-(L-lactide-co-glycolide) osteosynthesis material].
    Heidemann W; Fischer JH; Koebke J; Bussmann C; Gerlach KL
    Mund Kiefer Gesichtschir; 2003 Sep; 7(5):283-8. PubMed ID: 14551804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adverse tissue reactions to bioabsorbable fixation devices.
    Böstman OM; Pihlajamäki HK
    Clin Orthop Relat Res; 2000 Feb; (371):216-27. PubMed ID: 10693569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a resorbable fixation technique for maxillary fractures.
    Eppley BL
    J Craniofac Surg; 1998 Jul; 9(4):317-21. PubMed ID: 9780925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical experience with a new fast-resorbing polymer for bone stabilization in craniofacial surgery.
    Cohen SR; Mittermiller PA; Holmes RE; Broder KW
    J Craniofac Surg; 2006 Jan; 17(1):40-3. PubMed ID: 16432405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.