These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16260974)

  • 1. Validity of a single-visit protocol to estimate the maximum lactate steady state.
    Kilding AE; Jones AM
    Med Sci Sports Exerc; 2005 Oct; 37(10):1734-40. PubMed ID: 16260974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal lactate steady state in trained adolescent runners.
    Almarwaey OA; Jones AM; Tolfrey K
    J Sports Sci; 2004 Feb; 22(2):215-25. PubMed ID: 14998099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating a test protocol for predicting maximum lactate steady state.
    Bacon L; Kern M
    J Sports Med Phys Fitness; 1999 Dec; 39(4):300-8. PubMed ID: 10726430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state [Formula: see text] above MLSS: evidence that critical speed better represents maximal metabolic steady state in well-trained runners.
    Nixon RJ; Kranen SH; Vanhatalo A; Jones AM
    Eur J Appl Physiol; 2021 Nov; 121(11):3133-3144. PubMed ID: 34351531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 1-day maximal lactate steady-state assessment protocol for trained runners.
    Palmer AS; Potteiger JA; Nau KL; Tong RJ
    Med Sci Sports Exerc; 1999 Sep; 31(9):1336-41. PubMed ID: 10487377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a single-day maximal lactate steady state assessment protocol.
    Kuphal KE; Potteiger JA; Frey BB; Hise MP
    J Sports Med Phys Fitness; 2004 Jun; 44(2):132-40. PubMed ID: 15470310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players.
    Denadai BS; Gomide EB; Greco CC
    J Strength Cond Res; 2005 May; 19(2):364-8. PubMed ID: 15903376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of heart rate at lactate minimum and maximal lactate steady state in wheelchair-racing athletes.
    Perret C; Labruyère R; Mueller G; Strupler M
    Spinal Cord; 2012 Jan; 50(1):33-6. PubMed ID: 21894166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of sprint triathlon performance from laboratory tests.
    Van Schuylenbergh R; Eynde BV; Hespel P
    Eur J Appl Physiol; 2004 Jan; 91(1):94-9. PubMed ID: 12955517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The validity of the lactate minimum test for determination of the maximal lactate steady state.
    Jones AM; Doust JH
    Med Sci Sports Exerc; 1998 Aug; 30(8):1304-13. PubMed ID: 9710874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximal constant heart rate--a heart rate based method to estimate maximal lactate steady state in running.
    Vobejda C; Fromme K; Samson W; Zimmermann E
    Int J Sports Med; 2006 May; 27(5):368-72. PubMed ID: 16729378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists.
    Van Schuylenbergh R; Vanden Eynde B; Hespel P
    Int J Sports Med; 2004 Aug; 25(6):403-8. PubMed ID: 15346226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is maximal lactate steady state during intermittent cycling different for active compared with passive recovery?
    Greco CC; Barbosa LF; Caritá RA; Denadai BS
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1147-52. PubMed ID: 23030656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise.
    Foxdal P; Sjödin A; Sjödin B
    Int J Sports Med; 1996 Jul; 17(5):360-5. PubMed ID: 8858408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise.
    Dittrich N; de Lucas RD; Beneke R; Guglielmo LG
    Int J Sports Physiol Perform; 2014 Sep; 9(5):772-6. PubMed ID: 24235775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling.
    Iannetta D; Fontana FY; Maturana FM; Inglis EC; Pogliaghi S; Keir DA; Murias JM
    J Sci Med Sport; 2018 Dec; 21(12):1274-1280. PubMed ID: 29803737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of exercise mode and maximal lactate-steady-state concentration on the validity of OBLA to predict maximal lactate-steady-state in active individuals.
    Figueira TR; Caputo F; Pelarigo JG; Denadai BS
    J Sci Med Sport; 2008 Jun; 11(3):280-6. PubMed ID: 17553745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of maximal lactate steady state in runners with an incremental test on the field.
    Leti T; Mendelson M; Laplaud D; Flore P
    J Sports Sci; 2012; 30(6):609-16. PubMed ID: 22364376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects.
    Fontana P; Boutellier U; Knöpfli-Lenzin C
    Eur J Appl Physiol; 2009 Sep; 107(2):187-92. PubMed ID: 19551404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill.
    Tolfrey K; Hansen SA; Dutton K; McKee T; Jones AM
    Appl Physiol Nutr Metab; 2009 Aug; 34(4):763-72. PubMed ID: 19767813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.