These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16260974)

  • 21. Methods for estimating the maximal lactate steady state in trained cyclists.
    Harnish CR; Swensen TC; Pate RR
    Med Sci Sports Exerc; 2001 Jun; 33(6):1052-5. PubMed ID: 11404673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood pH and lactate kinetics in the assessment of running endurance.
    Usaj A; Starc V
    Int J Sports Med; 1996 Jan; 17(1):34-40. PubMed ID: 8775574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactate minimum test during incremental running after a submaximal cycling exercise: a novel test with training applications for triathletes.
    Vicente-Campous D; Barbado C; Nuñez MJ; Chicharro JL
    J Sports Med Phys Fitness; 2014 Dec; 54(6):742-9. PubMed ID: 25350031
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood glucose minimum predicts maximal lactate steady state on running.
    Sotero RC; Pardono E; Landwehr R; Campbell CS; Simoes HG
    Int J Sports Med; 2009 Sep; 30(9):643-6. PubMed ID: 19569005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Maximal lactate steady-state independent of recovery period during intermittent protocol.
    Barbosa LF; de Souza MR; Caritá RA; Caputo F; Denadai BS; Greco CC
    J Strength Cond Res; 2011 Dec; 25(12):3385-90. PubMed ID: 22076084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A "Step-Ramp-Step" Protocol to Identify Running Speed and Power Associated with the Maximal Metabolic Steady State.
    VAN Rassel CR; Ajayi OO; Sales KM; Azevedo RA; Murias JM; Macinnis MJ
    Med Sci Sports Exerc; 2023 Mar; 55(3):534-547. PubMed ID: 36251387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Conconi test in not valid for estimation of the lactate turnpoint in runners.
    Jones AM; Doust JH
    J Sports Sci; 1997 Aug; 15(4):385-94. PubMed ID: 9293415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners.
    Smith CG; Jones AM
    Eur J Appl Physiol; 2001 Jul; 85(1-2):19-26. PubMed ID: 11513315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state.
    Faude O; Hecksteden A; Hammes D; Schumacher F; Besenius E; Sperlich B; Meyer T
    Appl Physiol Nutr Metab; 2017 Feb; 42(2):142-147. PubMed ID: 28128633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of the maximum steady state of lactate (MLSS) in saliva: an alternative to blood lactate determination.
    Pérez M; Lucía A; Carvajal A; Pardo J; Chicharro JL
    Jpn J Physiol; 1999 Aug; 49(4):395-400. PubMed ID: 10529500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of stage duration in incremental running tests on physiological variables.
    Kuipers H; Rietjens G; Verstappen F; Schoenmakers H; Hofman G
    Int J Sports Med; 2003 Oct; 24(7):486-91. PubMed ID: 12968205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes.
    Zwingmann L; Strütt S; Martin A; Volmary P; Bloch W; Wahl P
    Phys Sportsmed; 2019 May; 47(2):174-181. PubMed ID: 30408426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can measures of critical power precisely estimate the maximal metabolic steady-state?
    Mattioni Maturana F; Keir DA; McLay KM; Murias JM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1197-1203. PubMed ID: 27819154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substantial influence of level of endurance capacity on the association of perceived exertion with blood lactate accumulation.
    Held T; Marti B
    Int J Sports Med; 1999 Jan; 20(1):34-9. PubMed ID: 10090459
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the anaerobic threshold and maximal lactate steady state speed in equines using the lactate minimum speed protocol.
    Gondim FJ; Zoppi CC; Pereira-da-Silva L; de Macedo DV
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):375-80. PubMed ID: 17234441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise.
    Grossl T; de Lucas RD; de Souza KM; Guglielmo LG
    Appl Physiol Nutr Metab; 2012 Dec; 37(6):1047-53. PubMed ID: 22891876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lactate Equivalent for Maximal Lactate Steady State Determination in Soccer.
    Garcia-Tabar I; Rampinini E; Gorostiaga EM
    Res Q Exerc Sport; 2019 Dec; 90(4):678-689. PubMed ID: 31479401
    [No Abstract]   [Full Text] [Related]  

  • 38. Using near-infrared spectroscopy to determine maximal steady state exercise intensity.
    Snyder AC; Parmenter MA
    J Strength Cond Res; 2009 Sep; 23(6):1833-40. PubMed ID: 19675475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of aerobic training status on both maximal lactate steady state and critical power.
    Greco CC; Caritá RA; Dekerle J; Denadai BS
    Appl Physiol Nutr Metab; 2012 Aug; 37(4):736-43. PubMed ID: 22680338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-exhaustive test for aerobic capacity determination in running rats.
    Manchado-Gobatto FB; Gobatto CA; Contarteze RV; Mello MA
    Indian J Exp Biol; 2011 Oct; 49(10):781-5. PubMed ID: 22013745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.