BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 16261101)

  • 1. A comparison of pedicle and lateral mass screw construct stiffnesses at the cervicothoracic junction: a biomechanical study.
    Rhee JM; Kraiwattanapong C; Hutton WC
    Spine (Phila Pa 1976); 2005 Nov; 30(21):E636-40. PubMed ID: 16261101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which salvage fixation technique is best for the failed initial screw fixation at the cervicothoracic junction? A biomechanical comparison study.
    Hong JT; Tomoyuki T; Jain A; Orías AAE; Inoue N; An HS
    Eur Spine J; 2017 Sep; 26(9):2417-2424. PubMed ID: 28752245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques.
    Espinoza-Larios A; Ames CP; Chamberlain RH; Sonntag VK; Dickman CA; Crawford NR
    Spine J; 2007; 7(2):194-204. PubMed ID: 17321969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of spinal instrumentation on kinematics at the cervicothoracic junction: emphasis on soft-tissue response in an in vitro human cadaveric model.
    Kretzer RM; Hu N; Umekoji H; Sciubba DM; Jallo GI; McAfee PC; Tortolani PJ; Cunningham BW
    J Neurosurg Spine; 2010 Oct; 13(4):435-42. PubMed ID: 20887140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical comparison of translaminar versus pedicle screws at T1 and T2 in long subaxial cervical constructs.
    McGirt MJ; Sutter EG; Xu R; Sciubba DM; Wolinsky JP; Witham TF; Gokaslan ZL; Bydon A
    Neurosurgery; 2009 Dec; 65(6 Suppl):167-72; discussion 172. PubMed ID: 19934991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral mass versus hybrid construct for cervical laminectomy and fusion.
    Regan CM; Emmanuel S; Hornik C; Weinhold P; Lim MR
    Orthopedics; 2013 Apr; 36(4):e484-8. PubMed ID: 23590790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of transfacet screws to lateral mass screw-rod constructs in the lower cervical spine.
    Tong J; Ji W; Zhou R; Huang Z; Liu S; Zhu Q
    Eur Spine J; 2016 Jun; 25(6):1787-93. PubMed ID: 26530298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction: a biomechanical study.
    O'Brien JR; Dmitriev AE; Yu W; Gelb D; Ludwig S
    J Spinal Disord Tech; 2009 Jul; 22(5):340-6. PubMed ID: 19525789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posterior cervicothoracic instrumentation in spine tumors.
    Mazel C; Hoffmann E; Antonietti P; Grunenwald D; Henry M; Williams J
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1246-53. PubMed ID: 15167665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis.
    Brodke DS; Bachus KN; Mohr RA; Nguyen BK
    Spine J; 2001; 1(5):373-9. PubMed ID: 14588318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pedicle screws can be 4 times stronger than lateral mass screws for insertion in the midcervical spine: a biomechanical study on strength of fixation.
    Ito Z; Higashino K; Kato S; Kim SS; Wong E; Yoshioka K; Hutton WC
    J Spinal Disord Tech; 2014 Apr; 27(2):80-5. PubMed ID: 22373932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of C-7 transfacet screw fixation.
    Horn EM; Reyes PM; Baek S; Senoglu M; Theodore N; Sonntag VK; Crawford NR
    J Neurosurg Spine; 2009 Sep; 11(3):338-43. PubMed ID: 19769516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of cervical transfacet pedicle screws versus pedicle screws.
    Liu GY; Xu RM; Ma WH; Sun SH; Huang L; Ying JW; Jiang WY
    Chin Med J (Engl); 2008 Aug; 121(15):1390-3. PubMed ID: 18959115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine.
    Kothe R; Rüther W; Schneider E; Linke B
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1869-75. PubMed ID: 15534407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations for the use of C7 crossing laminar screws in subaxial and cervicothoracic instrumentation.
    Ilgenfritz RM; Gandhi AA; Fredericks DC; Grosland NM; Smucker JD
    Spine (Phila Pa 1976); 2013 Feb; 38(4):E199-204. PubMed ID: 23169075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical comparison of three different posterior fixation constructs used for c6-c7 cervical spine immobilization: a finite element study.
    Hong JT; Qasim M; Espinoza Orías AA; Natarajan RN; An HS
    Neurol Med Chir (Tokyo); 2014; 54(9):727-35. PubMed ID: 24418790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine.
    Bozkus H; Ames CP; Chamberlain RH; Nottmeier EW; Sonntag VK; Papadopoulos SM; Crawford NR
    Spine (Phila Pa 1976); 2005 Apr; 30(8):915-22. PubMed ID: 15834336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical assessment of infra-laminar hooks as an alternative to supra-laminar hooks in thoracolumbar fixation.
    Murakami H; Tsai KJ; Attallah-Wasif ES; Yamazaki K; Shimamura T; Hutton WC
    Spine (Phila Pa 1976); 2006 Apr; 31(9):967-71. PubMed ID: 16641771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis.
    Slucky AV; Brodke DS; Bachus KN; Droge JA; Braun JT
    Spine J; 2006; 6(1):78-85. PubMed ID: 16413452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.