These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 16261170)

  • 41. Context-Specific Action of Ribosomal Antibiotics.
    Vázquez-Laslop N; Mankin AS
    Annu Rev Microbiol; 2018 Sep; 72():185-207. PubMed ID: 29906204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Components of the macrolide binding site on the ribosome.
    Tejedor F; Ballesta JP
    J Antimicrob Chemother; 1985 Jul; 16 Suppl A():53-62. PubMed ID: 4055551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antimicrobial agents targeting the ribosome: the issue of selectivity and toxicity - lessons to be learned.
    Böttger EC
    Cell Mol Life Sci; 2007 Apr; 64(7-8):791-5. PubMed ID: 17429579
    [No Abstract]   [Full Text] [Related]  

  • 44. Fluorescence polarization method to characterize macrolide-ribosome interactions.
    Yan K; Hunt E; Berge J; May E; Copeland RA; Gontarek RR
    Antimicrob Agents Chemother; 2005 Aug; 49(8):3367-72. PubMed ID: 16048949
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A long-distance rRNA base pair impacts the ability of macrolide antibiotics to kill bacteria.
    Svetlov MS; Cohen S; Alsuhebany N; Vázquez-Laslop N; Mankin AS
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):1971-1975. PubMed ID: 31932436
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antibiotics targeting ribosomes: crystallographic studies.
    Auerbach T; Bashan A; Harms J; Schluenzen F; Zarivach R; Bartels H; Agmon I; Kessler M; Pioletti M; Franceschi F; Yonath A
    Curr Drug Targets Infect Disord; 2002 Jun; 2(2):169-86. PubMed ID: 12462147
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The structural basis for inhibition of ribosomal translocation by viomycin.
    Zhang L; Wang YH; Zhang X; Lancaster L; Zhou J; Noller HF
    Proc Natl Acad Sci U S A; 2020 May; 117(19):10271-10277. PubMed ID: 32341159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death.
    Levin BR; McCall IC; Perrot V; Weiss H; Ovesepian A; Baquero F
    mBio; 2017 Feb; 8(1):. PubMed ID: 28174311
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using sequence-specific oligonucleotides to inhibit bacterial rRNA.
    Trylska J; Thoduka SG; Dąbrowska Z
    ACS Chem Biol; 2013; 8(6):1101-9. PubMed ID: 23631412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The emerging new generation of antibiotic: ketolides.
    Zhong P; Shortridge V
    Curr Drug Targets Infect Disord; 2001 Aug; 1(2):125-31. PubMed ID: 12455409
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit.
    Brodersen DE; Clemons WM; Carter AP; Morgan-Warren RJ; Wimberly BT; Ramakrishnan V
    Cell; 2000 Dec; 103(7):1143-54. PubMed ID: 11163189
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational analysis of ketolide, conformations of RU 004 in solution and bound to bacterial ribosomes.
    Bertho G; Gharbi-Benarous J; Delaforge M; Lang C; Parent A; Girault JP
    J Med Chem; 1998 Aug; 41(18):3373-86. PubMed ID: 9719590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation.
    Champney WS
    Infect Disord Drug Targets; 2006 Dec; 6(4):377-90. PubMed ID: 17168803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition.
    Gagnon MG; Roy RN; Lomakin IB; Florin T; Mankin AS; Steitz TA
    Nucleic Acids Res; 2016 Mar; 44(5):2439-50. PubMed ID: 26809677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the nature of antibiotic binding sites in ribosomes.
    Cundliffe E
    Biochimie; 1987 Aug; 69(8):863-9. PubMed ID: 3122848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elements of ribosomal drug resistance and specificity.
    Blaha GM; Polikanov YS; Steitz TA
    Curr Opin Struct Biol; 2012 Dec; 22(6):750-8. PubMed ID: 22981944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059.
    Pfister P; Jenni S; Poehlsgaard J; Thomas A; Douthwaite S; Ban N; Böttger EC
    J Mol Biol; 2004 Oct; 342(5):1569-81. PubMed ID: 15364582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformations in solution and bound to bacterial ribosomes of ketolides, HMR 3647 (telithromycin) and RU 72366: a new class of highly potent antibacterials.
    Evrard-Todeschi N; Gharbi-Benarous J; Gaillet C; Verdier L; Bertho G; Lang C; Parent A; Girault JP
    Bioorg Med Chem; 2000 Jul; 8(7):1579-97. PubMed ID: 10976506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development.
    Arenz S; Wilson DN
    Mol Cell; 2016 Jan; 61(1):3-14. PubMed ID: 26585390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.