These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Bikkul MU; Clements CS; Godwin LS; Goldberg MW; Kill IR; Bridger JM Biogerontology; 2018 Dec; 19(6):579-602. PubMed ID: 29907918 [TBL] [Abstract][Full Text] [Related]
10. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Finley J Med Hypotheses; 2018 Sep; 118():151-162. PubMed ID: 30037605 [TBL] [Abstract][Full Text] [Related]
11. Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. McClintock D; Gordon LB; Djabali K Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2154-9. PubMed ID: 16461887 [TBL] [Abstract][Full Text] [Related]
12. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Eisch V; Lu X; Gabriel D; Djabali K Oncotarget; 2016 Apr; 7(17):24700-18. PubMed ID: 27015553 [TBL] [Abstract][Full Text] [Related]
13. A conserved splicing mechanism of the LMNA gene controls premature aging. Lopez-Mejia IC; Vautrot V; De Toledo M; Behm-Ansmant I; Bourgeois CF; Navarro CL; Osorio FG; Freije JM; Stévenin J; De Sandre-Giovannoli A; Lopez-Otin C; Lévy N; Branlant C; Tazi J Hum Mol Genet; 2011 Dec; 20(23):4540-55. PubMed ID: 21875900 [TBL] [Abstract][Full Text] [Related]
14. Pluripotent stem cells to model Hutchinson-Gilford progeria syndrome (HGPS): Current trends and future perspectives for drug discovery. Lo Cicero A; Nissan X Ageing Res Rev; 2015 Nov; 24(Pt B):343-8. PubMed ID: 26474742 [TBL] [Abstract][Full Text] [Related]
15. N6-isopentenyladenosine improves nuclear shape in fibroblasts from humans with progeroid syndromes by inhibiting the farnesylation of prelamin A. Bifulco M; D'Alessandro A; Paladino S; Malfitano AM; Notarnicola M; Caruso MG; Laezza C FEBS J; 2013 Dec; 280(23):6223-32. PubMed ID: 24112551 [TBL] [Abstract][Full Text] [Related]
16. Dermal fibroblasts in Hutchinson-Gilford progeria syndrome with the lamin A G608G mutation have dysmorphic nuclei and are hypersensitive to heat stress. Paradisi M; McClintock D; Boguslavsky RL; Pedicelli C; Worman HJ; Djabali K BMC Cell Biol; 2005 Jun; 6():27. PubMed ID: 15982412 [TBL] [Abstract][Full Text] [Related]
17. Sulforaphane enhances progerin clearance in Hutchinson-Gilford progeria fibroblasts. Gabriel D; Roedl D; Gordon LB; Djabali K Aging Cell; 2015 Feb; 14(1):78-91. PubMed ID: 25510262 [TBL] [Abstract][Full Text] [Related]
18. The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Delbarre E; Tramier M; Coppey-Moisan M; Gaillard C; Courvalin JC; Buendia B Hum Mol Genet; 2006 Apr; 15(7):1113-22. PubMed ID: 16481358 [TBL] [Abstract][Full Text] [Related]
19. Progeria, the nucleolus and farnesyltransferase inhibitors. Mehta IS; Bridger JM; Kill IR Biochem Soc Trans; 2010 Feb; 38(Pt 1):287-91. PubMed ID: 20074076 [TBL] [Abstract][Full Text] [Related]
20. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Villa-Bellosta R; Rivera-Torres J; Osorio FG; Acín-Pérez R; Enriquez JA; López-Otín C; Andrés V Circulation; 2013 Jun; 127(24):2442-51. PubMed ID: 23690466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]