These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1626130)

  • 41. Ventilatory response to exercise in diabetic subjects with autonomic neuropathy.
    Tantucci C; Bottini P; Dottorini ML; Puxeddu E; Casucci G; Scionti L; Sorbini CA
    J Appl Physiol (1985); 1996 Nov; 81(5):1978-86. PubMed ID: 8941519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD.
    Liu Z; Vargas F; Stansbury D; Sasse SA; Light RW
    Chest; 1995 May; 107(5):1218-24. PubMed ID: 7750309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of exercise cardiac output by the Fick principle using oxygen and carbon dioxide.
    Sun XG; Hansen JE; Ting H; Chuang ML; Stringer WW; Adame D; Wasserman K
    Chest; 2000 Sep; 118(3):631-40. PubMed ID: 10988183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hypoxic depression of ventilation in humans: alternative models for the chemoreflexes.
    Khamnei S; Robbins PA
    Respir Physiol; 1990 Jul; 81(1):117-34. PubMed ID: 2120758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exercise end-tidal CO2 predicts central sleep apnea in patients with heart failure.
    Cundrle I; Somers VK; Johnson BD; Scott CG; Olson LJ
    Chest; 2015 Jun; 147(6):1566-1573. PubMed ID: 25742609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors which alter the relationship between ventilation and carbon dioxide production during exercise in normal subjects.
    Clark AL; Volterrani M; Piepoli M; Coats AJ
    Eur J Appl Physiol Occup Physiol; 1996; 73(1-2):144-8. PubMed ID: 8861683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maximal aerobic exercise in pregnant women: heart rate, O2 consumption, CO2 production, and ventilation.
    Lotgering FK; van Doorn MB; Struijk PC; Pool J; Wallenburg HC
    J Appl Physiol (1985); 1991 Mar; 70(3):1016-23. PubMed ID: 1903379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local pulmonary blood flow: control and gas exchange.
    Sheehan DW; Farhi LE
    Respir Physiol; 1993 Oct; 94(1):91-107. PubMed ID: 8272584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transition from exercise to rest. Ventilatory and arterial blood gas responses.
    O'Neill AV; Johnson DC
    Chest; 1991 May; 99(5):1145-50. PubMed ID: 1902160
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ventilatory response to sustained hypoxia during exercise.
    Ward DS; Nguyen TT
    Med Sci Sports Exerc; 1991 Jun; 23(6):719-26. PubMed ID: 1886480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M
    Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pulmonary gas exchange and its determinants during sustained microgravity on Spacelabs SLS-1 and SLS-2.
    Prisk GK; Elliott AR; Guy HJ; Kosonen JM; West JB
    J Appl Physiol (1985); 1995 Oct; 79(4):1290-8. PubMed ID: 8567575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of exercise on the development of respiratory depression during sustained isocapnic hypoxia in humans.
    Pandit JJ; Robbins PA
    Respiration; 1997; 64(1):86-95. PubMed ID: 9044482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of indirect methods for continuous estimation of arterial PCO2 in men.
    Robbins PA; Conway J; Cunningham DA; Khamnei S; Paterson DJ
    J Appl Physiol (1985); 1990 Apr; 68(4):1727-31. PubMed ID: 2112130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Difference between end-tidal and arterial PCO2 in exercise.
    Jones NL; Robertson DG; Kane JW
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Nov; 47(5):954-60. PubMed ID: 511720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of ventilation during exercise in patients with central venous-to-systemic arterial shunts.
    Sietsema KE; Cooper DM; Perloff JK; Child JS; Rosove MH; Wasserman K; Whipp BJ
    J Appl Physiol (1985); 1988 Jan; 64(1):234-42. PubMed ID: 3356640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence for hypoxic depression of CO2-ventilation response in carotid body-resected humans.
    Honda Y; Hashizume I
    J Appl Physiol (1985); 1991 Feb; 70(2):590-3. PubMed ID: 1902455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of hypercapnia by normal subjects.
    Schwartzstein RM; La Hive K; Pope A; Steinbrook RA; Leith DE; Weiss JW; Fencl V; Weinberger SE
    Clin Sci (Lond); 1987 Sep; 73(3):333-5. PubMed ID: 3115668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of body CO2 stores on ventilatory dynamics during exercise.
    Ward SA; Whipp BJ; Koyal S; Wasserman K
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Sep; 55(3):742-9. PubMed ID: 6415010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing.
    Carter R; Banham SW
    Respir Med; 2000 Apr; 94(4):350-5. PubMed ID: 10845433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.