BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16262000)

  • 1. Regulatory mechanisms of 6,7-dimethyl-8-ribityllumazine formation in resting cells of a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2005 Aug; 51(4):271-3. PubMed ID: 16262000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of riboflavin on 6,7-dimethyl-8-ribityllumazine formation in growing cells of a riboflavin-adenine-deficient mutant, Bacillus subtilis.
    Nakajima K
    J Nutr Sci Vitaminol (Tokyo); 2004 Oct; 50(5):377-9. PubMed ID: 15754501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine from a riboflavin-adenine-deficient mutant of Bacillus subtilis.
    Mitsuda H; Nakajima K; Yamada Y
    J Biol Chem; 1978 Apr; 253(7):2238-43. PubMed ID: 416026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Regulation of the activity and synthesis of enzymes participating in the formation of 6,7-dimethyl-8-ribityllumazine, a riboflavin precursor in yeast].
    Logvinenko EM; Shavlovskiĭ GM; Zakal'skiĭ AE; Samarskiĭ VA
    Ukr Biokhim Zh (1978); 1989; 61(1):28-32. PubMed ID: 2741238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Riboflavin deficiency and respiratory flavoproteins of Bacillus subtilis.
    Kemp MB; Garland PB
    J Gen Microbiol; 1974 Dec; 85(2):303-13. PubMed ID: 4155718
    [No Abstract]   [Full Text] [Related]  

  • 7. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria.
    Mironov AS; Gusarov I; Rafikov R; Lopez LE; Shatalin K; Kreneva RA; Perumov DA; Nudler E
    Cell; 2002 Nov; 111(5):747-56. PubMed ID: 12464185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin.
    Akiyama T; Selhub J; Rosenberg IH
    J Nutr; 1982 Feb; 112(2):263-8. PubMed ID: 6120218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation.
    Hustad S; McKinley MC; McNulty H; Schneede J; Strain JJ; Scott JM; Ueland PM
    Clin Chem; 2002 Sep; 48(9):1571-7. PubMed ID: 12194936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and binding of riboflavin by Bacillus subtilis.
    Cecchini G; Perl M; Lipsick J; Singer TP; Kearney EB
    J Biol Chem; 1979 Aug; 254(15):7295-301. PubMed ID: 110806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of riboflavin deficiency upon concentrations of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in Novikoff hepatoma in rats.
    Rivlin RS; Hornibrook R; Osnos M
    Cancer Res; 1973 Nov; 33(11):3019-23. PubMed ID: 4355989
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced riboflavin incorporation into flavins in newborn riboflavin-deficient rats.
    Muttart C; Chaudhuri R; Pinto J; Rivlin RS
    Am J Physiol; 1977 Nov; 233(5):E397-401. PubMed ID: 920802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of flavine-adenine dinucleotide from riboflavine by a mutant of Sarcina lutea.
    Watanabe T; Uchida T; Kato J; Chibata I
    Appl Microbiol; 1974 Mar; 27(3):531-6. PubMed ID: 4824882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide.
    Pinto J; Huang YP; Rivlin RS
    J Clin Invest; 1987 May; 79(5):1343-8. PubMed ID: 3033022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli.
    Langer S; Hashimoto M; Hobl B; Mathes T; Mack M
    J Bacteriol; 2013 Sep; 195(18):4037-45. PubMed ID: 23836860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of flavins in ocular tissues of the rabbit.
    Batey DW; Eckhert CD
    Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1981-5. PubMed ID: 2055692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata.
    Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon.
    Solovieva IM; Kreneva RA; Leak DJ; Perumov DA
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness.
    Vasilaki AT; McMillan DC; Kinsella J; Duncan A; O'Reilly DS; Talwar D
    Clin Chim Acta; 2010 Nov; 411(21-22):1750-5. PubMed ID: 20667447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.