These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16262328)

  • 1. Enhanced anion electroadsorption into carbon molecular sieve electrodes in acidic media.
    Eliad L; Salitra G; Pollak E; Soffer A; Aurbach D
    Langmuir; 2005 Nov; 21(23):10615-23. PubMed ID: 16262328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon materials for supercapacitor application.
    Frackowiak E
    Phys Chem Chem Phys; 2007 Apr; 9(15):1774-85. PubMed ID: 17415488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-sieving capabilities of mesoporous carbon membranes.
    Hou CH; Wang X; Liang C; Yiacoumi S; Tsouris C; Dai S
    J Phys Chem B; 2008 Jul; 112(29):8563-70. PubMed ID: 18590324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence of the electronic conductivity of carbon molecular sieve electrodes on their charging states.
    Pollak E; Genish I; Salitra G; Soffer A; Klein L; Aurbach D
    J Phys Chem B; 2006 Apr; 110(14):7443-8. PubMed ID: 16599523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.
    Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL
    Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ small angle neutron scattering revealing ion sorption in microporous carbon electrical double layer capacitors.
    Boukhalfa S; Gordon D; He L; Melnichenko YB; Nitta N; Magasinski A; Yushin G
    ACS Nano; 2014 Mar; 8(3):2495-503. PubMed ID: 24547779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of electrolyte solutions sorbed in carbon nanospaces, studied by the replica RISM theory.
    Tanimura A; Kovalenko A; Hirata F
    Langmuir; 2007 Jan; 23(3):1507-17. PubMed ID: 17241081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.
    Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A
    Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of electrical double layers in organic electrolytes.
    Feng G; Huang J; Sumpter BG; Meunier V; Qiao R
    Phys Chem Chem Phys; 2010; 12(20):5468-79. PubMed ID: 20467670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic liquid near a charged wall: structure and capacitance of electrical double layer.
    Fedorov MV; Kornyshev AA
    J Phys Chem B; 2008 Sep; 112(38):11868-72. PubMed ID: 18729396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of electrical double-layer formation from mixtures of electrolytes inside nanopores.
    Hou CH; Taboada-Serrano P; Yiacoumi S; Tsouris C
    J Chem Phys; 2008 Jan; 128(4):044705. PubMed ID: 18247979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Supporting Electrolyte on the Adsorption of Octanoic Acid at the Mercury/Electrolyte Interface.
    Avranas A; Retter U; Lunkenheimer K
    J Colloid Interface Sci; 2000 Jul; 227(2):398-407. PubMed ID: 10873326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion correlation forces between uncharged dielectric walls.
    Wernersson E; Kjellander R
    J Chem Phys; 2008 Oct; 129(14):144701. PubMed ID: 19045159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced electric double-layer capacitance by desolvation of lithium ions in confined nanospaces of microporous carbon.
    Urita K; Ide N; Isobe K; Furukawa H; Moriguchi I
    ACS Nano; 2014 Apr; 8(4):3614-9. PubMed ID: 24646017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.