BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 16262414)

  • 1. A simple iridium catalyst with a single resolved stereocenter for enantioselective allylic amination. Catalyst selection from mechanistic analysis.
    Leitner A; Shekhar S; Pouy MJ; Hartwig JF
    J Am Chem Soc; 2005 Nov; 127(44):15506-14. PubMed ID: 16262414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an activated catalyst in the iridium-catalyzed allylic amination and etherification. Increased rates, scope, and selectivity.
    Kiener CA; Shu C; Incarvito C; Hartwig JF
    J Am Chem Soc; 2003 Nov; 125(47):14272-3. PubMed ID: 14624564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editing the stereochemical elements in an iridium catalyst for enantioselective allylic amination.
    Leitner A; Shu C; Hartwig JF
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5830-3. PubMed ID: 15067140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of catalyst activation and ligand steric properties on the enantioselective allylation of amines and phenoxides.
    Leitner A; Shu C; Hartwig JF
    Org Lett; 2005 Mar; 7(6):1093-6. PubMed ID: 15760147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective iridium-catalyzed allylic amination of ammonia and convenient ammonia surrogates.
    Pouy MJ; Leitner A; Weix DJ; Ueno S; Hartwig JF
    Org Lett; 2007 Sep; 9(20):3949-52. PubMed ID: 17725361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic resolution of aminoalkenes by asymmetric hydroamination: a mechanistic study.
    Reznichenko AL; Hampel F; Hultzsch KC
    Chemistry; 2009 Nov; 15(46):12819-27. PubMed ID: 19834946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iridium-catalyzed regio- and enantioselective allylation of ketone enolates.
    Graening T; Hartwig JF
    J Am Chem Soc; 2005 Dec; 127(49):17192-3. PubMed ID: 16332060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistically driven development of iridium catalysts for asymmetric allylic substitution.
    Hartwig JF; Stanley LM
    Acc Chem Res; 2010 Dec; 43(12):1461-75. PubMed ID: 20873839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regio- and enantioselective iridium-catalyzed intermolecular allylic etherification of achiral allylic carbonates with phenoxides.
    López F; Ohmura T; Hartwig JF
    J Am Chem Soc; 2003 Mar; 125(12):3426-7. PubMed ID: 12643693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3,3'-Bis(trisarylsilyl)-substituted binaphtholate rare earth metal catalysts for asymmetric hydroamination.
    Gribkov DV; Hultzsch KC; Hampel F
    J Am Chem Soc; 2006 Mar; 128(11):3748-59. PubMed ID: 16536549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of the iridium complex of the pybox ligand in regio- and enantioselective allylic substitution.
    Miyabe H; Matsumura A; Moriyama K; Takemoto Y
    Org Lett; 2004 Nov; 6(24):4631-4. PubMed ID: 15548093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric allylic substitution catalyzed by C1-symmetrical complexes of molybdenum: structural requirements of the ligand and the stereochemical course of the reaction.
    Malkov AV; Gouriou L; Lloyd-Jones GC; Starý I; Langer V; Spoor P; Vinader V; Kocovský P
    Chemistry; 2006 Sep; 12(26):6910-29. PubMed ID: 16807930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereochemical consequences of threefold symmetry in asymmetric catalysis: distorting C3 Chiral 1,1,1-tris(oxazolinyl)ethanes ("trisox") in CuII Lewis acid catalysts.
    Foltz C; Stecker B; Marconi G; Bellemin-Laponnaz S; Wadepohl H; Gade LH
    Chemistry; 2007; 13(35):9912-23. PubMed ID: 17955557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric hydrogenation using monodentate phosphoramidite ligands.
    Minnaard AJ; Feringa BL; Lefort L; de Vries JG
    Acc Chem Res; 2007 Dec; 40(12):1267-77. PubMed ID: 17705446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new chiral Rh(II) catalyst for enantioselective [2 + 1]-cycloaddition. mechanistic implications and applications.
    Lou Y; Horikawa M; Kloster RA; Hawryluk NA; Corey EJ
    J Am Chem Soc; 2004 Jul; 126(29):8916-8. PubMed ID: 15264821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective hydrogenation of olefins with phosphinooxazoline-iridium catalysts.
    Blackmond DG; Lightfoot A; Pfaltz A; Rosner T; Schnider P; Zimmermann N
    Chirality; 2000 Jun; 12(5-6):442-9. PubMed ID: 10824167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium-catalyzed allylic substitutions with cyclometalated phosphoramidite complexes bearing a dibenzocyclooctatetraene ligand: preparation of (π-allyl)Ir complexes and computational and NMR spectroscopic studies.
    Raskatov JA; Jäkel M; Straub BF; Rominger F; Helmchen G
    Chemistry; 2012 Nov; 18(45):14314-28. PubMed ID: 23018807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olefins as steering ligands for homogeneously catalyzed hydrogenations.
    Maire P; Deblon S; Breher F; Geier J; Böhler C; Rüegger H; Schönberg H; Grützmacher H
    Chemistry; 2004 Sep; 10(17):4198-205. PubMed ID: 15352102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly active palladium catalyst for intermolecular hydroamination. Factors that control reactivity and additions of functionalized anilines to dienes and vinylarenes.
    Johns AM; Utsunomiya M; Incarvito CD; Hartwig JF
    J Am Chem Soc; 2006 Feb; 128(6):1828-39. PubMed ID: 16464081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of iron(II) complexes with tetradentate diiminodiphosphine or diaminodiphosphine ligands as precatalysts for the hydrogenation of acetophenone.
    Sui-Seng C; Haque FN; Hadzovic A; Pütz AM; Reuss V; Meyer N; Lough AJ; Zimmer-De Iuliis M; Morris RH
    Inorg Chem; 2009 Jan; 48(2):735-43. PubMed ID: 19035760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.