These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16262428)

  • 1. Nano-segregated polymeric film exhibiting high ionic conductivities.
    Kishimoto K; Suzawa T; Yokota T; Mukai T; Ohno H; Kato T
    J Am Chem Soc; 2005 Nov; 127(44):15618-23. PubMed ID: 16262428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals.
    Shimura H; Yoshio M; Hoshino K; Mukai T; Ohno H; Kato T
    J Am Chem Soc; 2008 Feb; 130(5):1759-65. PubMed ID: 18193872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.
    Ichikawa T; Yoshio M; Hamasaki A; Kagimoto J; Ohno H; Kato T
    J Am Chem Soc; 2011 Feb; 133(7):2163-9. PubMed ID: 21271700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured anisotropic ion-conductive films.
    Kishimoto K; Yoshio M; Mukai T; Yoshizawa M; Ohno H; Kato T
    J Am Chem Soc; 2003 Mar; 125(11):3196-7. PubMed ID: 12630858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional ion transport in self-organized columnar ionic liquids.
    Yoshio M; Mukai T; Ohno H; Kato T
    J Am Chem Soc; 2004 Feb; 126(4):994-5. PubMed ID: 14746447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals.
    Yoshio M; Kagata T; Hoshino K; Mukai T; Ohno H; Kato T
    J Am Chem Soc; 2006 Apr; 128(16):5570-7. PubMed ID: 16620131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic conductivity in crystalline polymer electrolytes.
    Gadjourova Z; Andreev YG; Tunstall DP; Bruce PG
    Nature; 2001 Aug; 412(6846):520-3. PubMed ID: 11484048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically anisotropic thin films consisting of polymeric and metallic nanolayers from self-assembled lamellae of diblock copolymers.
    Yun SH; Yoo SM; Sohn BH; Jung JC; Zin WC; Kwak SY; Lee TS
    Langmuir; 2005 Apr; 21(8):3625-8. PubMed ID: 15807611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts.
    Seki S; Susan MA; Kaneko T; Tokuda H; Noda A; Watanabe M
    J Phys Chem B; 2005 Mar; 109(9):3886-92. PubMed ID: 16851440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer electrolytes based on room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium triflate.
    Singh B; Sekhon SS
    J Phys Chem B; 2005 Sep; 109(34):16539-43. PubMed ID: 16853102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes.
    Susan MA; Kaneko T; Noda A; Watanabe M
    J Am Chem Soc; 2005 Apr; 127(13):4976-83. PubMed ID: 15796564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured liquid crystals combining ionic and electronic functions.
    Yazaki S; Funahashi M; Kagimoto J; Ohno H; Kato T
    J Am Chem Soc; 2010 Jun; 132(22):7702-8. PubMed ID: 20465261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and Bis(trifluoromethanesulfonyl)imide anion.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Scrosati B
    J Phys Chem B; 2009 Aug; 113(32):11247-51. PubMed ID: 19621942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing fast oxide-ion conductors based on La2Mo2O9.
    Lacorre P; Goutenoire F; Bohnke O; Retoux R; Laligant Y
    Nature; 2000 Apr; 404(6780):856-8. PubMed ID: 10786788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor.
    Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S
    J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure.
    Kuang X; Green MA; Niu H; Zajdel P; Dickinson C; Claridge JB; Jantsky L; Rosseinsky MJ
    Nat Mater; 2008 Jun; 7(6):498-504. PubMed ID: 18488032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb.
    Stoeva Z; Martin-Litas I; Staunton E; Andreev YG; Bruce PG
    J Am Chem Soc; 2003 Apr; 125(15):4619-26. PubMed ID: 12683834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology-enhanced conductivity in dry ionic liquids.
    Erbaş A; de la Cruz MO
    Phys Chem Chem Phys; 2016 Mar; 18(9):6441-50. PubMed ID: 26862598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of plasticizer type on the properties of polymer electrolytes based on chitosan.
    Pawlicka A; Danczuk M; Wieczorek W; Zygadło-Monikowska E
    J Phys Chem A; 2008 Sep; 112(38):8888-95. PubMed ID: 18754600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.