BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1064 related articles for article (PubMed ID: 16262668)

  • 1. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic mediation of constant light-potentiated nonphotic phase shifting of the circadian locomotor activity rhythm in Syrian hamsters.
    Knoch ME; Siegel D; Duncan MJ; Glass JD
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul; 291(1):R180-8. PubMed ID: 16760334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.
    Moriya T; Yoshinobu Y; Ikeda M; Yokota S; Akiyama M; Shibata S
    Br J Pharmacol; 1998 Nov; 125(6):1281-7. PubMed ID: 9863658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonergic potentiation of dark pulse-induced phase-shifting effects at midday in hamsters.
    Mendoza J; Clesse D; Pévet P; Challet E
    J Neurochem; 2008 Aug; 106(3):1404-14. PubMed ID: 18498439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice.
    Smith VM; Sterniczuk R; Phillips CI; Antle MC
    Neuroscience; 2008 Dec; 157(3):513-23. PubMed ID: 18930788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei.
    Horikawa K; Yokota S; Fuji K; Akiyama M; Moriya T; Okamura H; Shibata S
    J Neurosci; 2000 Aug; 20(15):5867-73. PubMed ID: 10908630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression.
    Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E
    Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrodotoxin administration in the suprachiasmatic nucleus prevents NMDA-induced reductions in pineal melatonin without influencing Per1 and Per2 mRNA levels.
    Paul KN; Gamble KL; Fukuhara C; Novak CM; Tosini G; Albers HE
    Eur J Neurosci; 2004 May; 19(10):2808-14. PubMed ID: 15147314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the intrinsic regulation of neuropeptide Y release in the mammalian suprachiasmatic nucleus circadian clock.
    Glass JD; Guinn J; Kaur G; Francl JM
    Eur J Neurosci; 2010 Mar; 31(6):1117-26. PubMed ID: 20377624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin-induced phase advances of SCN neuronal firing in vitro: a possible role for 5-HT5A receptors?
    Sprouse J; Reynolds L; Braselton J; Schmidt A
    Synapse; 2004 Nov; 54(2):111-8. PubMed ID: 15352136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus.
    Yokota SI; Horikawa K; Akiyama M; Moriya T; Ebihara S; Komuro G; Ohta T; Shibata S
    Br J Pharmacol; 2000 Dec; 131(8):1739-47. PubMed ID: 11139454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus.
    Ehlen JC; Grossman GH; Glass JD
    J Neurosci; 2001 Jul; 21(14):5351-7. PubMed ID: 11438611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythm phenotype of 5-HT7 receptor knockout mice: 5-HT and 8-OH-DPAT-induced phase advances of SCN neuronal firing.
    Sprouse J; Li X; Stock J; McNeish J; Reynolds L
    J Biol Rhythms; 2005 Apr; 20(2):122-31. PubMed ID: 15834109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of photic and nonphotic stimuli in the 5-HT7 receptor knockout mouse.
    Gardani M; Biello SM
    Neuroscience; 2008 Mar; 152(1):245-53. PubMed ID: 18065150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic pre-treatments block in vitro serotonergic phase shifts of the mouse suprachiasmatic nucleus circadian clock.
    Prosser RA; Lee HM; Wehner A
    Neuroscience; 2006 Oct; 142(2):547-55. PubMed ID: 16876330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents.
    Mendoza J; Revel FG; Pévet P; Challet E
    Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal control of the fetal and neonatal rat suprachiasmatic nucleus.
    El-Hennamy R; Mateju K; Bendová Z; Sosniyenko S; Sumová A
    J Biol Rhythms; 2008 Oct; 23(5):435-44. PubMed ID: 18838609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.