BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1626326)

  • 1. Factors associated with the mass of venom expended by prairie rattlesnakes (Crotalus v. viridis) feeding on mice.
    Hayes WK
    Toxicon; 1992 Apr; 30(4):449-60. PubMed ID: 1626326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of striking, prey-handling and envenomation behavior of prairie rattlesnakes (Crotalus v. viridis).
    Hayes WK
    Toxicon; 1991; 29(7):867-75. PubMed ID: 1926185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denim clothing reduces venom expenditure by rattlesnakes striking defensively at model human limbs.
    Herbert SS; Hayes WK
    Ann Emerg Med; 2009 Dec; 54(6):830-6. PubMed ID: 19942067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic cost of venom replenishment by Prairie Rattlesnakes (Crotalus viridis viridis).
    Smith MT; Ortega J; Beaupre SJ
    Toxicon; 2014 Aug; 86():1-7. PubMed ID: 24814011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Venom flow in rattlesnakes: mechanics and metering.
    Young BA; Zahn K
    J Exp Biol; 2001 Dec; 204(Pt 24):4345-51. PubMed ID: 11815658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for prey relocation in viperid snakes.
    Saviola AJ; Chiszar D; Busch C; Mackessy SP
    BMC Biol; 2013 Mar; 11():20. PubMed ID: 23452837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey.
    Robinson KE; Holding ML; Whitford MD; Saviola AJ; Yates JR; Clark RW
    J Evol Biol; 2021 Sep; 34(9):1447-1465. PubMed ID: 34322920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Stress Integrates Resistance to Rattlesnake Venom and the Onset of Risky Foraging in California Ground Squirrels.
    Holding ML; Putman BJ; Kong LM; Smith JE; Clark RW
    Toxins (Basel); 2020 Sep; 12(10):. PubMed ID: 32992585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An isoelectric focusing study of seasonal variation in rattlesnake venom proteins.
    Gregory-Dwyer VM; Egen NB; Bosisio AB; Righetti PG; Russell FE
    Toxicon; 1986; 24(10):995-1000. PubMed ID: 3824406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rock squirrel (Spermophilus variegatus) blood sera affects proteolytic and hemolytic activities of rattlesnake venoms.
    Biardi JE; Coss RG
    Toxicon; 2011 Feb; 57(2):323-31. PubMed ID: 21184770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers.
    Mackessy SP
    Toxicon; 2010 Jul; 55(8):1463-74. PubMed ID: 20227433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity.
    Urdaneta AH; Bolaños F; Gutiérrez JM
    Comp Biochem Physiol C Toxicol Pharmacol; 2004 Aug; 138(4):485-92. PubMed ID: 15536056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfang Distances of Rattlesnakes: Sexual, Interspecific, and Body Size-related Variation, and Implications for Snakebite Research and Management.
    Hayes WK; Corbit AG; Cardwell MD; Herbert SS
    Wilderness Environ Med; 2017 Jun; 28(2):101-107. PubMed ID: 28483391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and behavioral ecology of foraging in prairie rattlesnakes (Crotalus viridis viridis).
    Duvall D; Chiszar D; Hayes WK; Leonhardt JK; Goode MJ
    J Chem Ecol; 1990 Jan; 16(1):87-101. PubMed ID: 24264898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?
    Hayes WK; Mackessy SP
    Wilderness Environ Med; 2010 Mar; 21(1):35-45. PubMed ID: 20591352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snake eyes: Characterization of topical ocular exposures from rattlesnakes in Arizona.
    Maciulewicz TS; Cardwell MD; Brandecker K; Massey DJ; Shirazi FM
    Toxicon; 2024 Jun; 244():107775. PubMed ID: 38782188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plethora of rodents: Rattlesnake predators generate unanticipated patterns of venom resistance in a grassland ecosystem.
    Balchan NR; Smith CF; Mackessy SP
    Toxicon X; 2024 Mar; 21():100179. PubMed ID: 38144228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No safety in the trees: Local and species-level adaptation of an arboreal squirrel to the venom of sympatric rattlesnakes.
    Pomento AM; Perry BW; Denton RD; Gibbs HL; Holding ML
    Toxicon; 2016 Aug; 118():149-55. PubMed ID: 27158112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of venom expulsion in Crotalus, with special reference to the role of the fang sheath.
    Young BA; Blair M; Zahn K; Marvin J
    Anat Rec; 2001 Dec; 264(4):415-26. PubMed ID: 11745096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri).
    Gibbs HL; Sanz L; Chiucchi JE; Farrell TM; Calvete JJ
    J Proteomics; 2011 Sep; 74(10):2169-79. PubMed ID: 21722760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.