These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 16263798)

  • 1. Effects of enhanced human chemosensitivity on ventilatory responses to exercise.
    Foster GE; McKenzie DC; Sheel AW
    Exp Physiol; 2006 Jan; 91(1):221-8. PubMed ID: 16263798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia.
    Foster GE; McKenzie DC; Milsom WK; Sheel AW
    J Physiol; 2005 Sep; 567(Pt 2):689-99. PubMed ID: 15975977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of two different intermittent hypoxia protocols on ventilatory responses to hypoxia and carbon dioxide at rest.
    Koehle M; Sheel W; Milsom W; McKenzie D
    Adv Exp Med Biol; 2008; 605():218-23. PubMed ID: 18085275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced chemosensitivity after intermittent hypoxic exposure does not affect exercise ventilation at sea level.
    Katayama K; Sato Y; Shima N; Qiu JC; Ishida K; Mori S; Miyamura M
    Eur J Appl Physiol; 2002 Jun; 87(2):187-91. PubMed ID: 12070631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent hypoxia increases ventilation and Sa(O2) during hypoxic exercise and hypoxic chemosensitivity.
    Katayama K; Sato Y; Morotome Y; Shima N; Ishida K; Mori S; Miyamura M
    J Appl Physiol (1985); 2001 Apr; 90(4):1431-40. PubMed ID: 11247944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent hypoxia does not increase exercise ventilation at simulated moderate altitude.
    Katayama K; Sato K; Hotta N; Ishida K; Iwasaki K; Miyamura M
    Int J Sports Med; 2007 Jun; 28(6):480-7. PubMed ID: 17357965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between resting ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia.
    Ogawa T; Hayashi K; Ichinose M; Nishiyasu T
    J Appl Physiol (1985); 2007 Oct; 103(4):1221-6. PubMed ID: 17656629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of intermittent exposure to hypoxia during endurance exercise training on the ventilatory responses to hypoxia and hypercapnia in humans.
    Katayama K; Sato Y; Ishida K; Mori S; Miyamura M
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):189-94. PubMed ID: 9720995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two patterns of daily hypoxic exposure and their effects on measures of chemosensitivity in humans.
    Koehle MS; Sheel AW; Milsom WK; McKenzie DC
    J Appl Physiol (1985); 2007 Dec; 103(6):1973-8. PubMed ID: 17947502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoreflex drive and the dynamics of ventilation and gas exchange during exercise at hypoxia.
    Fukuoka Y; Endo M; Oishi Y; Ikegami H
    Am J Respir Crit Care Med; 2003 Nov; 168(9):1115-22. PubMed ID: 14581289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of two durations of short-term intermittent hypoxia on ventilatory chemosensitivity in humans.
    Katayama K; Ishida K; Iwasaki K; Miyamura M
    Eur J Appl Physiol; 2009 Mar; 105(5):815-21. PubMed ID: 19125287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral chemoreceptor responsiveness and hypoxic pulmonary vasoconstriction in humans.
    Albert TJ; Swenson ER
    High Alt Med Biol; 2014 Apr; 15(1):15-20. PubMed ID: 24444139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low chemoresponsiveness and inadequate hyperventilation contribute to exercise-induced hypoxemia.
    Harms CA; Stager JM
    J Appl Physiol (1985); 1995 Aug; 79(2):575-80. PubMed ID: 7592220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of augmentation and depression of hypoxic ventilatory responses at altitude.
    Sato M; Severinghaus JW; Bickler P
    J Appl Physiol (1985); 1994 Jul; 77(1):313-6. PubMed ID: 7961252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining.
    Katayama K; Sato Y; Morotome Y; Shima N; Ishida K; Mori S; Miyamura M
    J Appl Physiol (1985); 1999 Jun; 86(6):1805-11. PubMed ID: 10368341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic hypoxemia on chemosensitivity in patients with univentricular heart.
    Chua TP; Iserin L; Somerville J; Coats AJ
    J Am Coll Cardiol; 1997 Dec; 30(7):1827-34. PubMed ID: 9385914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human ventilatory responsiveness to hypoxia is unrelated to maximal aerobic capacity.
    Sheel AW; Koehle MS; Guenette JA; Foster GE; Sporer BC; Diep TT; McKenzie DC
    J Appl Physiol (1985); 2006 Apr; 100(4):1204-9. PubMed ID: 16410378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated measurement of hypoxic ventilatory response as an intermittent hypoxic stimulus.
    Koehle MS; Foster GE; McKenzie DC; Sheel AW
    Respir Physiol Neurobiol; 2005 Jan; 145(1):33-9. PubMed ID: 15652786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness.
    Bärtsch P; Swenson ER; Paul A; Jülg B; Hohenhaus E
    High Alt Med Biol; 2002; 3(4):361-76. PubMed ID: 12631422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory changes during intermittent hypoxia: importance of pattern and duration.
    Prabhakar NR; Kline DD
    High Alt Med Biol; 2002; 3(2):195-204. PubMed ID: 12162863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.