These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16263932)

  • 1. The amyloid stretch hypothesis: recruiting proteins toward the dark side.
    Esteras-Chopo A; Serrano L; López de la Paz M
    Proc Natl Acad Sci U S A; 2005 Nov; 102(46):16672-7. PubMed ID: 16263932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamics study of the interaction of D-peptide amyloid inhibitors with their target sequence reveals a potential inhibitory pharmacophore conformation.
    Esteras-Chopo A; Morra G; Moroni E; Serrano L; Lopez de la Paz M; Colombo G
    J Mol Biol; 2008 Oct; 383(1):266-80. PubMed ID: 18703072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New strategy for the generation of specific D-peptide amyloid inhibitors.
    Esteras-Chopo A; Pastor MT; Serrano L; López de la Paz M
    J Mol Biol; 2008 Apr; 377(5):1372-81. PubMed ID: 18328503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide model systems for amyloid fiber formation: design strategies and validation methods.
    Esteras-Chopo A; Pastor MT; López de la Paz M
    Methods Mol Biol; 2006; 340():253-76. PubMed ID: 16957341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of the structure, dynamics and native content of amyloid-like fibrils of ribonuclease A.
    Colombo G; Meli M; De Simone A
    Proteins; 2008 Feb; 70(3):863-72. PubMed ID: 17803210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool.
    Gazit E
    FEBS J; 2005 Dec; 272(23):5971-8. PubMed ID: 16302962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural models of amyloid-like fibrils.
    Nelson R; Eisenberg D
    Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of lipid-protein interactions in amyloid-type protein fibril formation.
    Gorbenko GP; Kinnunen PK
    Chem Phys Lipids; 2006 Jun; 141(1-2):72-82. PubMed ID: 16569401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family.
    Iconomidou VA; Chryssikos GD; Gionis V; Galanis AS; Cordopatis P; Hoenger A; Hamodrakas SJ
    J Struct Biol; 2006 Dec; 156(3):480-8. PubMed ID: 17056273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of model systems for amyloid formation: lessons for prediction and inhibition.
    Pastor MT; Esteras-Chopo A; López de la Paz M
    Curr Opin Struct Biol; 2005 Feb; 15(1):57-63. PubMed ID: 15718134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amide inequivalence in the fibrillar assembly of islet amyloid polypeptide.
    Koo BW; Hebda JA; Miranker AD
    Protein Eng Des Sel; 2008 Mar; 21(3):147-54. PubMed ID: 18299291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation.
    Hung A; Griffin MD; Howlett GJ; Yarovsky I
    J Phys Chem B; 2009 Jul; 113(28):9447-53. PubMed ID: 19537801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential.
    Zhang Z; Chen H; Lai L
    Bioinformatics; 2007 Sep; 23(17):2218-25. PubMed ID: 17599928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence determinants of amyloid fibril formation.
    López de la Paz M; Serrano L
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):87-92. PubMed ID: 14691246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
    Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A
    J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase.
    Osváth S; Jäckel M; Agócs G; Závodszky P; Köhler G; Fidy J
    Proteins; 2006 Mar; 62(4):909-17. PubMed ID: 16353200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins.
    Tompa P
    FEBS J; 2009 Oct; 276(19):5406-15. PubMed ID: 19712107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion.
    Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P
    J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.