These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16264235)

  • 21. Short peptides act as inducers, anti-inducers and corepressors of Tet repressor.
    Goeke D; Kaspar D; Stoeckle C; Grubmüller S; Berens C; Klotzsche M; Hillen W
    J Mol Biol; 2012 Feb; 416(1):33-45. PubMed ID: 22178480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The yeast protein Xtc1 functions as a direct transcriptional repressor.
    Traven A; Staresincić L; Arnerić M; Sopta M
    Nucleic Acids Res; 2002 Jun; 30(11):2358-64. PubMed ID: 12034822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the DNA-binding domains from the yeast cell-cycle transcription factors Mbp1 and Swi4.
    Taylor IA; McIntosh PB; Pala P; Treiber MK; Howell S; Lane AN; Smerdon SJ
    Biochemistry; 2000 Apr; 39(14):3943-54. PubMed ID: 10747782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repression of G1/S transcription is mediated via interaction of the GTB motifs of Nrm1 and Whi5 with Swi6.
    Travesa A; Kalashnikova TI; de Bruin RA; Cass SR; Chahwan C; Lee DE; Lowndes NF; Wittenberg C
    Mol Cell Biol; 2013 Apr; 33(8):1476-86. PubMed ID: 23382076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of the yeast PIS1 gene requires multiple regulatory elements including a Rox1p binding site.
    Gardocki ME; Lopes JM
    J Biol Chem; 2003 Oct; 278(40):38646-52. PubMed ID: 12890676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and DNA binding of the yeast MAT alpha 2 homeodomain.
    Wolberger C
    Cold Spring Harb Symp Quant Biol; 1993; 58():159-66. PubMed ID: 7956026
    [No Abstract]   [Full Text] [Related]  

  • 27. NADP regulates the yeast GAL induction system.
    Kumar PR; Yu Y; Sternglanz R; Johnston SA; Joshua-Tor L
    Science; 2008 Feb; 319(5866):1090-2. PubMed ID: 18292341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Forkhead proteins control the outcome of transcription factor binding by antiactivation.
    Voth WP; Yu Y; Takahata S; Kretschmann KL; Lieb JD; Parker RL; Milash B; Stillman DJ
    EMBO J; 2007 Oct; 26(20):4324-34. PubMed ID: 17898805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification by differential display of IL-24 autocrine loop activated by ras oncogenes.
    Tan Z; Wang M; Liang P
    Methods Mol Biol; 2006; 317():207-18. PubMed ID: 16264231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global analysis of gene expression by differential display: a mathematical model.
    Yang S; Liang P
    Methods Mol Biol; 2006; 317():3-21. PubMed ID: 16264219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state.
    Miles S; Li L; Davison J; Breeden LL
    PLoS Genet; 2013 Oct; 9(10):e1003854. PubMed ID: 24204289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation.
    Lavy T; Kumar PR; He H; Joshua-Tor L
    Genes Dev; 2012 Feb; 26(3):294-303. PubMed ID: 22302941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induced structural changes in protein-DNA complexes.
    Kyogoku Y; Kojima C; Lee SJ; Tochio H; Suzuki N; Matsuo H; Shirakawa M
    Methods Enzymol; 1995; 261():524-41. PubMed ID: 8569510
    [No Abstract]   [Full Text] [Related]  

  • 34. Understanding a transcriptional paradigm at the molecular level. The structure of yeast Gal80p.
    Thoden JB; Sellick CA; Reece RJ; Holden HM
    J Biol Chem; 2007 Jan; 282(3):1534-8. PubMed ID: 17121853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prioritization of gene regulatory interactions from large-scale modules in yeast.
    Lee HJ; Manke T; Bringas R; Vingron M
    BMC Bioinformatics; 2008 Jan; 9():32. PubMed ID: 18211684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain.
    Medina EM; Walsh E; Buchler NE
    Curr Opin Genet Dev; 2019 Oct; 58-59():103-110. PubMed ID: 31600629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Saturation screening for p53 target genes by digital fluorescent differential display.
    Cho YJ; Stein S; Jackson RS; Liang P
    Methods Mol Biol; 2006; 317():179-92. PubMed ID: 16264229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dinucleotide-sensing proteins: linking signaling networks and regulating transcription.
    Lamb HK; Stammers DK; Hawkins AR
    Sci Signal; 2008 Aug; 1(33):pe38. PubMed ID: 18714085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prions remodel gene expression in yeast.
    Tuite MF; Cox BS
    Nat Cell Biol; 2009 Mar; 11(3):241-3. PubMed ID: 19255570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saccharomyces genome database provides new regulation data.
    Costanzo MC; Engel SR; Wong ED; Lloyd P; Karra K; Chan ET; Weng S; Paskov KM; Roe GR; Binkley G; Hitz BC; Cherry JM
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D717-25. PubMed ID: 24265222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.