These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16264235)

  • 41. Dynamics of Gal80p in the Gal80p-Gal3p complex differ significantly from the dynamics in the Gal80p-Gal1p complex: implications for the higher specificity of Gal3p.
    Upadhyay SK
    Mol Biosyst; 2014 Dec; 10(12):3120-9. PubMed ID: 25220841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-system correlation identifies a gene regulatory Mediator submodule.
    Larivière L; Seizl M; van Wageningen S; Röther S; van de Pasch L; Feldmann H; Strässer K; Hahn S; Holstege FC; Cramer P
    Genes Dev; 2008 Apr; 22(7):872-7. PubMed ID: 18381891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Positive and negative design for nonconsensus protein-DNA binding affinity in the vicinity of functional binding sites.
    Afek A; Lukatsky DB
    Biophys J; 2013 Oct; 105(7):1653-60. PubMed ID: 24094406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptome analysis of Saccharomyces cerevisiae using serial analysis of gene expression.
    Basrai MA; Hieter P
    Methods Enzymol; 2002; 350():414-44. PubMed ID: 12073327
    [No Abstract]   [Full Text] [Related]  

  • 45. Modulation of DNA binding by gene-specific transcription factors.
    Schleif RF
    Biochemistry; 2013 Oct; 52(39):6755-65. PubMed ID: 23962133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The robustness and evolvability of transcription factor binding sites.
    Payne JL; Wagner A
    Science; 2014 Feb; 343(6173):875-7. PubMed ID: 24558158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophilic activity-based RNA probes reveal a self-alkylating RNA for RNA labeling.
    McDonald RI; Guilinger JP; Mukherji S; Curtis EA; Lee WI; Liu DR
    Nat Chem Biol; 2014 Dec; 10(12):1049-54. PubMed ID: 25306441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The genome shows its sensitive side.
    Raj A; McVicker G
    Nat Methods; 2014 Jan; 11(1):39-40. PubMed ID: 24378702
    [No Abstract]   [Full Text] [Related]  

  • 49. Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum.
    Longo LVG; Ray SC; Puccia R; Rappleye CA
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30101348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation.
    Honigberg SM
    Microb Cell; 2016 Aug; 3(8):302-328. PubMed ID: 27917388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Saccharomyces cerevisiae Nrd1-Nab3 transcription termination pathway acts in opposition to Ras signaling and mediates response to nutrient depletion.
    Darby MM; Serebreni L; Pan X; Boeke JD; Corden JL
    Mol Cell Biol; 2012 May; 32(10):1762-75. PubMed ID: 22431520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.
    Busti S; Coccetti P; Alberghina L; Vanoni M
    Sensors (Basel); 2010; 10(6):6195-240. PubMed ID: 22219709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inferring transcriptional modules from ChIP-chip, motif and microarray data.
    Lemmens K; Dhollander T; De Bie T; Monsieurs P; Engelen K; Smets B; Winderickx J; De Moor B; Marchal K
    Genome Biol; 2006; 7(5):R37. PubMed ID: 16677396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family.
    Mai B; Breeden L
    Mol Cell Biol; 1997 Nov; 17(11):6491-501. PubMed ID: 9343412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation of two novel cDNAs whose products associate with the amino terminus of the E2F1 transcription factor.
    Jordan KL; Evans DL; Steelman S; Hall DJ
    Biochemistry; 1996 Sep; 35(38):12320-8. PubMed ID: 8823166
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Signaling activation and repression of RNA polymerase II transcription in yeast.
    Reece RJ; Platt A
    Bioessays; 1997 Nov; 19(11):1001-10. PubMed ID: 9394622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain.
    Medina EM; Walsh E; Buchler NE
    Curr Opin Genet Dev; 2019 Oct; 58-59():103-110. PubMed ID: 31600629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of target genes of a yeast transcriptional repressor.
    Mai B; Breeden LL
    Methods Mol Biol; 2006; 317():267-77. PubMed ID: 16264235
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.