These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 16265636)
1. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. Ni S; Chang J; Chou L J Biomed Mater Res A; 2006 Jan; 76(1):196-205. PubMed ID: 16265636 [TBL] [Abstract][Full Text] [Related]
2. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). Bretcanu O; Misra S; Roy I; Renghini C; Fiori F; Boccaccini AR; Salih V J Tissue Eng Regen Med; 2009 Feb; 3(2):139-48. PubMed ID: 19170250 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
4. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
5. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering. Wu C; Ramaswamy Y; Zreiqat H Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260 [TBL] [Abstract][Full Text] [Related]
6. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
7. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
9. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Brown RF; Day DE; Day TE; Jung S; Rahaman MN; Fu Q Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097 [TBL] [Abstract][Full Text] [Related]
10. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
12. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
14. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
15. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. Chen QZ; Efthymiou A; Salih V; Boccaccini AR J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403 [TBL] [Abstract][Full Text] [Related]
16. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
17. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Wu C; Ramaswamy Y; Kwik D; Zreiqat H Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881 [TBL] [Abstract][Full Text] [Related]
18. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
19. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Tuzlakoglu K; Alves CM; Mano JF; Reis RL Macromol Biosci; 2004 Aug; 4(8):811-9. PubMed ID: 15468275 [TBL] [Abstract][Full Text] [Related]
20. Comparative in vitro study of the proliferation and growth of human osteoblast-like cells on various biomaterials. Itthichaisri C; Wiedmann-Al-Ahmad M; Huebner U; Al-Ahmad A; Schoen R; Schmelzeisen R; Gellrich NC J Biomed Mater Res A; 2007 Sep; 82(4):777-87. PubMed ID: 17326141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]